💡💡💡本文主要内容:详细介绍了疲劳驾驶行为检测整个过程,从数据集到训练模型到结果可视化分析。
博主简介
AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;
原创自研系列, 2024年计算机视觉顶会创新点
23年最火系列,内涵80+优化改进篇,涨点小能手,助力科研,好评率极高
应用系列篇:
1.疲劳驾驶行为
每一年,中国都因交通事故而造成数万人的死亡,造成了严重的损失。而其中司机疲劳驾驶,是导致事故发生的重要原因之一。但是当司机们陷入疲劳驾驶状态时,往往司机本人对此状态并不在意,甚至会陷入睡眠状态!整治疲劳驾驶行为成为了交通运输行业的首要任务。随着信息技术的日新月异,如今,我们有机会使用信息技术,消除疲劳驾驶的隐患。实现了通过驾驶员的眼部、嘴部动作实时推断疲劳状态,使得驾驶员能及时的被本地语音方式提醒,避免疲劳驾驶,同时后台管理人员能接收到司机疲劳报警信息。
1.1数据集介绍
数据集大小2914张,类别['closed_eye','closed_mouth','open_eye','open_mouth']
2.基于YOLOv5的疲劳驾驶行为检测
2.1 修改fatigue.yaml
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Download command: bash ./data/get_voc.sh
# Train command: python train.py --data voc.yaml
# Dataset should be placed next to yolov5 folder:
# /parent_folder
# /VOC
# /yolov5
# train and val datasets (image directory or *.txt file with image paths)
train: ./data/fatigue/train.txt # 16551 images
val: ./data/fatigue/val.txt # 4952 images
# number of classes
nc: 4
# class names
names: ['closed_eye','closed_mouth','open_eye','open_mouth']
2.2 修改train.py
def parse_opt(known=False):
"""Parses command-line arguments for YOLOv5 training, validation, and testing."""
parser = argparse.ArgumentParser()
parser.add_argument("--weights", type=str, default=ROOT / "weights/yolov5s.pt", help="initial weights path")
parser.add_argument("--cfg", type=str, default="models/yolov5s.yaml", help="model.yaml path")
parser.add_argument("--data", type=str, default=ROOT / "data/fatigue.yaml", help="dataset.yaml path")
parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")
parser.add_argument("--epochs", type=int, default=50, help="total training epochs")
parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")
parser.add_argument("--rect", action="store_true", help="rectangular training")
parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")
parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
parser.add_argument("--noval", action="store_true", help="only validate final epoch")
parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")
parser.add_argument("--noplots", action="store_true", help="save no plot files")
parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")
parser.add_argument(
"--evolve_population", type=str, default=ROOT / "data/hyps", help="location for loading population"
)
2.3 结果可视化分析
YOLOv5s summary: 157 layers, 7020913 parameters, 0 gradients, 15.8 GFLOPs
Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 25/25 [00:10<00:00, 2.38it/s]
all 787 2109 0.97 0.982 0.99 0.611
closed_eye 787 566 0.953 0.979 0.988 0.54
closed_mouth 787 701 0.986 0.997 0.989 0.622
open_eye 787 774 0.955 0.967 0.988 0.545
open_mouth 787 68 0.985 0.985 0.995 0.736
confusion_matrix.png文件是一个混淆矩阵的可视化图像,用于展示模型在不同类别上的分类效果。混淆矩阵是一个n×n的矩阵,其中n为分类数目,矩阵的每一行代表一个真实类别,每一列代表一个预测类别,矩阵中的每一个元素表示真实类别为行对应的类别,而预测类别为列对应的类别的样本数。
PR_curve.png
PR曲线中的P代表的是precision(精准率),R代表的是recall(召回率),其代表的是精准率与召回率的关系,一般情况下,将recall设置为横坐标,precision设置为纵坐标。PR曲线下围成的面积即AP,所有类别AP平均值即Map
预测结果:
关注下方名片,即可获取源码。