💡💡💡本文解决什么问题:轻量高性能网络PPLCNet替换YOLOv8 backbone

PPLCNet |  GFLOPs从9.6降低至6.6, mAP50从0.921下降至0.901,mAP50-95从0.697提升至0.752

Yolov8-Pose关键点检测专栏介绍:https://blog.csdn.net/m0_63774211/category_12398833.html

✨✨✨手把手教你从数据标记到生成适合Yolov8-pose的yolo数据集;

🚀🚀🚀模型性能提升、pose模式部署能力;

🍉🍉🍉应用范围:工业工件定位、人脸、摔倒检测等支持各个关键点检测;

 1.YOLOv8-pose引入PPLCNet性能

直接先上图

11-01 10:55