在上一篇文章的基础上,改进了代码质量,增加了多个正则表达式匹配,但同事也增加了程序执行的耗时。

from bs4 import BeautifulSoup
import requests
import time
import re
from random import randint
import pandas as pd

url_list = ['https://movie.douban.com/top250']
base_url = 'https://movie.douban.com/top250?start={start}'
for start in range(25, 251, 25):
    url_list.append(base_url.format(start=start))

headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36 Edg/124.0.0.0'}
movie_info = []


def parse_info(info):
    # 尝试第一个正则表达式
    pattern1 = re.compile(r"导演: (.*?)\s*/?\s*主演: (.*?)\s*(\d{4})\s*/\s*(.*?)\s*/\s*(.*)")
    match1 = re.search(pattern1, info)
    if match1:
        director = match1.group(1).strip()
        actors = match1.group(2).strip()
        year = match1.group(3).strip()
        countries = match1.group(4).strip().split(' ')
        genres = match1.group(5).strip().split(' ')
        return director, actors, year, countries, genres

    # 尝试第二个正则表达式
    pattern2 = re.compile(r"导演: (.*?)\s*/?\s*(\d{4})\s*/\s*(.*?)\s*/\s*(.*)")
    match2 = re.search(pattern2, info)
    if match2:
        director = match2.group(1).strip()
        actors = ""
        year = match2.group(2).strip()
        countries = match2.group(3).strip().split(' ')
        genres = match2.group(4).strip().split(' ')
        return director, actors, year, countries, genres

    # 尝试第三个正则表达式
    pattern3 = re.compile(r"导演: (.*?)\s*(\d{4})\s*/\s*(.*?)\s*/\s*(.*)")
    match3 = re.search(pattern3, info)
    if match3:
        director = match3.group(1).strip()
        actors = ""
        year = match3.group(2).strip()
        countries = match3.group(3).strip().split(' ')
        genres = match3.group(4).strip().split(' ')
        return director, actors, year, countries, genres

    # 尝试第四个正则表达式 (处理有多个年份的情况)
    pattern4 = re.compile(r"导演: (.*?)\s*主演: (.*?)\s*(.*?)\s*/\s*(.*?)\s*/\s*(.*)")
    match4 = re.search(pattern4, info)
    if match4:
        director = match4.group(1).strip()
        actors = match4.group(2).strip()
        year = match4.group(3).strip()
        countries = match4.group(4).strip().split(' ')
        genres = match4.group(5).strip().split(' ')
        return director, actors, year, countries, genres
    # 如果没有匹配,返回空值
    return "", "", "", [], []


for url in url_list:
    time.sleep(randint(1, 3))
    response = requests.get(url, headers=headers)
    soup = BeautifulSoup(response.text, 'html.parser')
    movie_items = soup.find_all('div', class_='item')
    for movie in movie_items:
        # 获取排名
        rank = movie.find('em').text.strip()
        # 获取电影标题
        title = movie.find('span', class_='title').text.strip()
        # 获取电影导演、演员、年份、上映地区等信息
        info = movie.find('div', class_='bd').find('p').text.strip()

        # 解析 info 字符串
        director, actors, year, countries, genres = parse_info(info)
        # 打印未匹配到的 info
        if director == "" and actors == "" and year == "":
            print(f"未匹配到的info: {info}")
            
        # 获取评分信息
        rating_num = movie.find('span', class_='rating_num').text.strip()
        # 获取评价人数信息
        rate_people_num = movie.find('div', class_='star').find_all('span')[3].text.strip()
        # 将信息进行汇总
        mock_data = {
            '排名': rank,
            '电影名称': title,
            '导演': director,
            '演员': actors,
            '上映年份': year,
            '上映地区': countries,
            '电影类型': genres,
            '评分': rating_num,
            '投票人数': rate_people_num
        }
        movie_info.append(mock_data)

df = pd.DataFrame(movie_info,columns=['排名', '电影名称', '导演', '演员', '上映年份', '上映地区', '电影类型', '评分', '投票人数'])
excel_path = 'movie_info.xlsx'
df.to_excel(excel_path, index=False)

06-18 00:18