文章目录
🚀一、算法的概念
算法(algorithm)是解决一系列问题的清晰指令,也就是,能对一定规范的输入,在有限的时间内获得所要求的输出。
简单来说,算法就是解决一个问题的具体方法和步骤。算法是程序的灵魂。
程序 = 算法+数据结构
🚀二、算法的特征
1.可行性
算法中执行的任何计算步骤都可以分解为基本可执行的操作步,即每个计算步都可以在有限时间里完成(也称之为有效性)
2.确定性
算法的每一步都要有确切的意义,不能有二义性。例如“增加x的值”,并没有说增加多少,计算机就无法执行明确的运算。
3.有穷性
算法的有穷性是指算法必须在执行有限个步骤后终止。操作次数不宜过大,不能超过人们事先设定的时间限制。
4.输入
算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法已经给出了初始条件。
5.输出
一个算法可能有1个或多个输出,以反映输入数据加工后的代码,没有输出的算法是没有意义的!
🚀三、算法的评价
通常一个好算法应该达到如下目标:
1.正确性
算法应该正确的解决问题。
2.可读性
算法应该具有较好的可读性,让人们理解算法的作用。
3.健壮性
输入非法数据时,算法也可以做出适当的反应,而不会产生奇奇怪怪的输出。
🚀四、算法的复杂度
算法复杂度是指算法在变为可执行程序后所耗费的时间资源和内存。
⛳(一)时间复杂度
1、时间复杂度的概念
评估程序所需要的时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
举例:
Func1 执行的基本操作次数 : F(N) = N^2 + 2*N + 10
当N越来越大的时候,数字的大小主要取决于N^2了。实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N; ++i)//这个循环N^2次
{
for (int j = 0; j < N; ++j)
{
++count;
}
}
for (int k = 0; k < 2 * N; ++k)
{
++count;
} //这个循环2*N次
int M = 10;
while (M--) //这个循环10次
{
++count;
}
printf("%d\n", count);
}
2、大O的渐进表示法
推导大O阶方法:
使用大O的渐进表示法以后,Func1的时间复杂度为: O(N^2)
另外有些算法的时间复杂度存在最好、平均和最坏情况:
例如:在一个长度为N数组中搜索一个数据x
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
3、常见时间复杂度
代码示范:
实例1
计算Func2的时间复杂度
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N; ++k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
基本操作执行了2*N + 10次,而通过推导大O阶方法,用常数1取代加法常数,得到2*N + 1,只保留最高阶项,得到2*N,将最高阶项的系数变为1,得到N
所以最后的时间复杂度是O(N)
实例2
计算Func3的时间复杂度
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++k)
{
++count;
}
for (int k = 0; k < N; ++k)
{
++count;
}
printf("%d\n", count);
}
时间复杂度为O(N+M)
实例3
计算Func4的时间复杂度
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++k)
{
++count;
}
printf("%d\n", count);
}
用常数1替代100,时间复杂度是O(1)
实例4
计算strchr的时间复杂度
const char* strchr(const char* str, int character)
{
while (*str != character)
{
str++;
}
return str;
}
最快执行了1次,最慢执行了N次,所以时间复杂度是O(N)
实例5
计算BubbleSort的时间复杂度
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i - 1] > a[i])
{
Swap(&a[i - 1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
第一趟冒泡排序了N - 1次,第二趟冒泡排序了N - 2次,依次类推,排序这个基本操作在最坏的情况下一共执行了(N-1)+(N-2)+…+3+2+1次比较和交换操作。使用等差数列求和的公式,可以将这个总次数简化为N(N-1)/2。,而最好的情况下是数组已经排好了,此时只需要执行N次,时间复杂度取最坏的情况,所以是O(N^2)
实例6
计算BinarySearch的时间复杂度
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n - 1;
// [begin, end]:begin和end是左闭右闭区间,因此有=号
while (begin <= end)
{
int mid = begin + ((end - begin) >> 1);
if (a[mid] < x)
begin = mid + 1;
else if (a[mid] > x)
end = mid - 1;
else
return mid;
}
return -1;
}
假如有序数组有N个数,那么查找一次就会将数组的范围缩小一半,直到最后只剩下一个数
可以这么用数字表示:
N / 2 / 2 / 2 / 2 / 2 / 2 … / 2 / 2 = 1
假设查找了x次,也就是每次将数组缩小一半(除以2)这个基本操作执行了x次,那么这个x与N之间的关系是2^x = N
那么x = logN,这里默认底数为2
所以时间复杂度是O(logN)
实例7
计算阶乘递归Fac的时间复杂度
long long Fac(size_t N)
{
if (0 == N)
return 1;
return Fac(N - 1) * N;
}
基本操作递归了N次,每一层的计算时间复杂度是常数时间。所以时间复杂度为O(N)
实例8
计算斐波那契递归Fib的时间复杂度
long long Fib(size_t N)
{
if (N < 3)
return 1;
return Fib(N - 1) + Fib(N - 2);
}
基本操作递归了约为2^N次,根据推到大O阶的方法,所以最后的时间复杂度为O(N)
⛳(二)空间复杂度
- 空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度
- 空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
- 空间复杂度一般不作考虑,一般都优先考虑时间复杂度。
实例1
计算BubbleSort的空间复杂度
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i - 1] > a[i])
{
Swap(&a[i - 1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
可见,红框标注的地方,是在函数的内部额外创建了4个变量,也就是开辟了常数个额外空间,所以空间复杂度为O(1)
实例2
计算Fibonacci的空间复杂度
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
if (n == 0)
return NULL;
long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
}
return fibArray;
}
在动态内存中开辟了N+1个sizeof(long long)大小的空间,所以空间复杂度为O(N)
实例3
计算阶乘递归Fac的空间复杂度
long long Fac(size_t N)
{
if (N == 0)
return 1;
return Fac(N - 1) * N;
}
递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间,所以空间复杂度为O(N)
实例4
计算Fibonacci的空间复杂度
long long Fib(size_t N)
{
if (N < 3)
return 1;
return Fib(N - 1) + Fib(N - 2);
}
每一次递归调用时,每两个子函数用的函数栈帧空间都是同一个,所以只额外开辟了N个栈帧,空间复杂度为O(N)