一、经纬度矫正法
1、算法说明
经纬度矫正法, 可以把鱼眼图想象成半个地球, 然后将地球展开成地图,经纬度矫正法主要是利用几何原理, 对图像进行展开矫正。
2、 代码
import math
from PIL import Image
im = Image.open("/Users/Fisheye_photo-600x600.jpg")
im.show()
width, high = im.size
sqrt_len = min(width, high)
im = im.transform((sqrt_len, sqrt_len),
Image.EXTENT,
((width-sqrt_len)/2, (high-sqrt_len)/2,
sqrt_len+(width-sqrt_len)/2, sqrt_len+(high-sqrt_len)/2)
)
width = high = sqrt_len
idata = im.getdata()
odata = []
alpha = math.pi/2
out_high = round(high * math.tan(alpha/2))
out_width = round(width * math.tan(alpha/2))
out_radius = round(high * math.tan(alpha/2))
out_center_x = out_width / 2
out_center_y = out_high / 2
out_bl_x = 0
out_br_x = out_width - 1
out_bt_y = 0
out_bb_y = out_high - 1
out_bl_cx = out_bl_x - out_center_x
out_br_cx = out_br_x - out_center_x
out_bt_cy = out_bt_y - out_center_y
out_bb_cy = out_bb_y - out_center_y
src_radius = round(high * math.sin(alpha/2))
src_center_x = width / 2
src_center_y = high / 2
for i in range(0, high * width):
ox = math.floor(i / out_width)
oy = i % out_high
cx = ox - out_center_x;
cy = oy - out_center_y;
out_distance = round(math.sqrt(pow(cx, 2) + pow(cy, 2)))
theta = math.atan2(cy, cx)
if (-math.pi/4 <= theta <= math.pi/4):
bx = out_radius * math.cos(math.pi/4)
by = bx * math.tan(theta)
elif (math.pi/4 <= theta <= math.pi*3/4):
by = out_radius * math.sin(math.pi/4)
bx = by / math.tan(theta)
elif (-math.pi*3/4 <= theta <= -math.pi/4):
by = out_radius * math.sin(-math.pi/4)
bx = by / math.tan(theta)
else:
bx = out_radius * math.cos(-math.pi*3/4)
by = bx * math.tan(theta)
bdy_distance = round(math.sqrt(pow(cx, 2) + pow(cy, 2)))
src_distance = src_radius * bdy_distance / out_radius
src_x = round(src_center_x + math.cos(theta) * src_distance)
src_y = round(src_center_y + math.sin(theta) * src_distance)
src_idx = src_x*width + src_y
if(0 < src_idx < high*width):
odata.append(idata[src_idx])
else:
odata.append((0,0,0))
om = Image.new("RGB", (high, width))
om.putdata(odata)
om.show()
3、代码及图片地址:GitHub - duducosmos/defisheye: Fast Corrects for fisheye distortion in an image.
二、棋盘格矫正方法
1、算法说明
利用棋盘格进行标定, 然后计算鱼眼镜头的畸变系数以及内参, opencv中自带有fisheye模块, 可以直接根据棋盘格标定结果,采用cv2.fisheye.calibrate
计算畸变系数以及内参, 然后使用cv2.fisheye.initUndistortRectifyMap
函数计算映射矩阵, 最后根据映射矩阵, 使用cv2.remap
进行矫正。
2、代码
import cv2
import numpy as np
import math
import time
# 鱼眼有效区域截取
def cut(img):
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
(_, thresh) = cv2.threshold(img_gray, 20, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(contours, key=cv2.contourArea, reverse=True)[0]
x,y,w,h = cv2.boundingRect(cnts)
r = max(w/ 2, h/ 2)
# 提取有效区域
img_valid = img[y:y+h, x:x+w]
return img_valid, int(r)
# 鱼眼矫正
def undistort(src,r):
# r: 半径, R: 直径
R = 2*r
# Pi: 圆周率
Pi = np.pi
# 存储映射结果
dst = np.zeros((R, R, 3))
src_h, src_w, _ = src.shape
# 圆心
x0, y0 = src_w//2, src_h//2
for dst_y in range(0, R):
theta = Pi - (Pi/R)*dst_y
temp_theta = math.tan(theta)**2
for dst_x in range(0, R):
# 取坐标点 p[i][j]
# 计算 sita 和 fi
phi = Pi - (Pi/R)*dst_x
temp_phi = math.tan(phi)**2
tempu = r/(temp_phi+ 1 + temp_phi/temp_theta)**0.5
tempv = r/(temp_theta + 1 + temp_theta/temp_phi)**0.5
if (phi < Pi/2):
u = x0 + tempu
else:
u = x0 - tempu
if (theta < Pi/2):
v = y0 + tempv
else:
v = y0 - tempv
if (u>=0 and v>=0 and u+0.5<src_w and v+0.5<src_h):
dst[dst_y, dst_x, :] = src[int(v+0.5)][int(u+0.5)]
# 计算在源图上四个近邻点的位置
# src_x, src_y = u, v
# src_x_0 = int(src_x)
# src_y_0 = int(src_y)
# src_x_1 = min(src_x_0 + 1, src_w - 1)
# src_y_1 = min(src_y_0 + 1, src_h - 1)
#
# value0 = (src_x_1 - src_x) * src[src_y_0, src_x_0, :] + (src_x - src_x_0) * src[src_y_0, src_x_1, :]
# value1 = (src_x_1 - src_x) * src[src_y_1, src_x_0, :] + (src_x - src_x_0) * src[src_y_1, src_x_1, :]
# dst[dst_y, dst_x, :] = ((src_y_1 - src_y) * value0 + (src_y - src_y_0) * value1 + 0.5).astype('uint8')
return dst
if __name__ == "__main__":
t = time.perf_counter()
frame = cv2.imread('../imgs/pig.jpg')
cut_img,R = cut(frame)
result_img = undistort(cut_img,R)
cv2.imwrite('../imgs/pig_nearest.jpg',result_img)
print(time.perf_counter()-t)
效果图
3、代码地址
https://github.com/HLearning/fisheye
三、总结:比对两个算法
本人用两个算法对一张图像进行拉直,发现经过经纬度矫正算法生成的图像原作者裁剪掉了边缘部分,见下图效果图,中间黑框内的图像是经过“经纬度矫正法”得到的效果图,外面的大图是用“棋盘格矫正法”得到的效果图
为了更直观,更改了图像的透明度,可以看出两个算法的效果还是多少有些差别的。
其实,两个算法的边缘部分都被严重拉伸,丢不丢掉看适用场景和个人需要吧。
四、知识拓展
立体标定
算法说明
坐标映射建立,各区域的角点都有一维世界坐标为0,对应图5中三幅子图像分别为Y=0,X=0,Z=0。根据棋盘方格边长以及与世界坐标原点间隔的方格数,可得到所有角点的世界坐标。从而建立起二维图像坐标与三维世界坐标的一一映射,用于模型参数的求解。
参考地址:采用立体标定板的鱼眼相机快速标定方法_真空技术_新闻动态_深圳市鼎达信装备有限公司
基于双经度模型的鱼眼图像畸变矫正方法