1.模拟生成的数据

import random

def generate_data(level, num_samples):
    if level not in [2, 3, 4]:
        return None
    
    data_list = []
    for _ in range(num_samples):
        # 构建指定等级的数据
        data = str(level)
        for _ in range(321):
            data += str(random.randint(0, 9))
        data_list.append(data)
    
    return data_list

def save_data_to_txt(data, filename):
    with open(filename, 'a') as f:
        for item in data:
            f.write("%s\n" % item)
    print(f"Data saved to {filename}")

# 创建一个文件用于存储所有数据
output_filename = "combined_data.txt"

# 生成等级为2的一万条数据,并保存到文件
level_2_data = generate_data(2, 100)
save_data_to_txt(level_2_data, output_filename)

# 生成等级为3的一万条数据,并保存到文件
level_3_data = generate_data(3, 100)
save_data_to_txt(level_3_data, output_filename)

# 生成等级为4的一万条数据,并保存到文件
level_4_data = generate_data(4, 100)
save_data_to_txt(level_4_data, output_filename)



将生成数据和对应的指标的表结合修改

import os
import pandas as pd

def multiply_lists(list1, list2):
    if len(list1) != len(list2):
        return None
    
    result = []
    result.append(str(list2[0]))
    for i in range(1, len(list1)):
        result.append(str(list1[i] * list2[i]))
    
    return "".join(result) 

def save_data_to_txt(data, filename):
    try:
        with open(filename, 'a') as f:
                f.write(data + "\n")
        print(f"数据已保存到 {filename}")
    except Exception as e:
        print(f"保存数据时发生错误:{e}")

# 读取Excel文件
df = pd.read_excel('F:\python level Guarantee 2.0\LG.xlsx', header=None)
# 将每一行转换为列表
rows_as_lists = df.values.tolist()
print(rows_as_lists)
level2 = rows_as_lists.pop()
print(rows_as_lists)
level3 = rows_as_lists.pop()
print(rows_as_lists)
level4 = rows_as_lists.pop()

output_filename = "F:/python level Guarantee 2.0/test.txt"

with open('F:/python level Guarantee 2.0/combined_data.txt', 'r', encoding='utf-8') as f:
    data_str_list = [line.strip() for line in f]
    for i in data_str_list:
        data = list(i)
        if int(data[0]) == int(level2[0]):
            result = multiply_lists(data, level2)
            save_data_to_txt(result, output_filename)
        if int(data[0]) == int(level3[0]):
            result = multiply_lists(data, level3)
            save_data_to_txt(result, output_filename)
        if int(data[0]) == int(level4[0]):
            result = multiply_lists(data, level4)
            save_data_to_txt(result, output_filename)

2.trian

import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
import numpy as np
from torch.utils.tensorboard import SummaryWriter
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(321, 159),
            nn.ReLU(),
            nn.Linear(159,81),
            nn.ReLU(),
            nn.Linear(81, 3),
        )

    def forward(self, input):
        return self.net(input)


class DataRemake(Dataset):
    def __init__(self, path):
        self.data, self.label = self.transform(path)
        self.len = len(self.label)

    def __getitem__(self, index):
        label = self.label[index]
        data = self.data[index]
        return label, data

    def __len__(self):
        return self.len

    def transform(self, path):
        data_tensor_list = []
        label_list = []
        with open(path, mode='r', encoding='utf-8') as fp:
            data_str_list = [line.strip() for line in fp]
            for i in data_str_list:
                data = list(i)
                label = int(data[0])
                # 转换标签为 one-hot 编码
                if label == 2:
                    label = [1, 0, 0]
                elif label == 3:
                    label = [0, 1, 0]
                elif label == 4:
                    label = [0, 0, 1]
                else:
                    raise ValueError(f"未知的标签值:{label}")

                data = data[1:]
                # 检查数据的长度并进行处理
                if len(data) != 321:
                    # 如果数据长度不是321,进行填充或截断操作
                    if len(data) < 322:
                        # 填充数据,这里假设用0填充
                        data.extend([0] * (321 - len(data)))
                    else:
                        # 截断数据
                        data = data[:321]

                data = np.array(list(map(float, data))).astype(np.float32)
                label = np.array(label).astype(np.float32)
                data = torch.from_numpy(data)
                label = torch.from_numpy(label)
                data_tensor_list.append(data)
                label_list.append(label)
            return data_tensor_list, label_list

# 路径可能需要根据实际情况修改
train_data = DataRemake('result1.txt')
train_dataloader = DataLoader(dataset=train_data, batch_size=10)

net = Model().to(DEVICE)
optimizer = torch.optim.SGD(net.parameters(), lr=0.005)
loss_func = nn.MSELoss().to(DEVICE)

list_pre = []


writer = SummaryWriter('logs')

# 在每个epoch结束时,记录损失值
for epoch in range(1000):
    for labels, datas in train_dataloader:
        labels = labels.to(DEVICE)
        datas = datas.to(DEVICE)
        output = net(datas)
        loss = loss_func(output, labels)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    if epoch % 100 == 0:
        list_pre.append(output)
        print('epoch:{} \n loss:{}'.format(epoch, round(loss.item(), 10)))
        
        # 记录损失值到TensorBoard
        writer.add_scalar('Loss/train', loss.item(), epoch)

# 记得在训练结束后关闭SummaryWriter
writer.close()

# 保存模型
torch.save(net.state_dict(), 'model.pth')

Level protection and deep learning-LMLPHP

3.test

import torch
from torch import nn
from torch.utils.data import DataLoader
from sklearn.metrics import accuracy_score
from torch.utils.data import Dataset, DataLoader
import numpy as np

DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(321, 159),
            nn.ReLU(),
            nn.Linear(159,81),
            nn.ReLU(),
            nn.Linear(81, 3),
        )

    def forward(self, input):
        return self.net(input)

class DataRemake(Dataset):
    def __init__(self, path):
        self.data, self.label = self.transform(path)
        self.len = len(self.label)

    def __getitem__(self, index):
        label = self.label[index]
        data = self.data[index]
        return label, data

    def __len__(self):
        return self.len

    def transform(self, path):
        data_tensor_list = []
        label_list = []
        with open(path, mode='r', encoding='utf-8') as fp:
            data_str_list = [line.strip() for line in fp]
            for i in data_str_list:
                data = list(i)
                label = int(data[0])
                # 转换标签为 one-hot 编码
                if label == 2:
                    label = [1, 0, 0]
                elif label == 3:
                    label = [0, 1, 0]
                elif label == 4:
                    label = [0, 0, 1]
                else:
                    raise ValueError(f"未知的标签值:{label}")

                data = data[1:]
                # 检查数据的长度并进行处理
                if len(data) != 321:
                    # 如果数据长度不是321,进行填充或截断操作
                    if len(data) < 322:
                        # 填充数据,这里假设用0填充
                        data.extend([0] * (321 - len(data)))
                    else:
                        # 截断数据
                        data = data[:321]

                data = np.array(list(map(float, data))).astype(np.float32)
                label = np.array(label).astype(np.float32)  # 转换标签数据类型为浮点型
                data = torch.from_numpy(data)
                label = torch.from_numpy(label)
                data_tensor_list.append(data)
                label_list.append(label)
            return data_tensor_list, label_list

# 加载模型
model = Model().to(DEVICE)
model.load_state_dict(torch.load('model.pth'))
model.eval()  # 将模型设置为评估模式

# 准备测试数据
test_data = DataRemake('test.txt')  # 假设测试数据的路径为'test_data.txt'
test_dataloader = DataLoader(dataset=test_data, batch_size=10)

# 初始化用于存储预测结果和真实标签的列表
predicted_labels = []
true_labels = []

# 迭代测试集,并进行预测
with torch.no_grad():
    for labels, datas in test_dataloader:
        labels = labels.to(DEVICE)
        datas = datas.to(DEVICE)
        output = model(datas)
        
        # 将输出转换为预测的标签
        _, predicted = torch.max(output, 1)
        
        # 将预测结果和真实标签添加到列表中
        predicted_labels.extend(predicted.cpu().numpy())
        true_labels.extend(labels.cpu().numpy())

# 计算准确率
accuracy = accuracy_score(np.argmax(true_labels, axis=1), predicted_labels)  # 使用 np.argmax 获取真实标签的类别
print(f"模型在测试集上的准确率为: {accuracy}")
# import torch

# # 加载模型
# model = Model().to(DEVICE)
# model.load_state_dict(torch.load('model.pth'))
# model.eval()  # 将模型设置为评估模式

# # 准备输入数据
# input_data = torch.randn(10, 321).to(DEVICE)  # 示例数据,需要根据实际情况调整形状和数据类型

# # 使用模型进行预测
# with torch.no_grad():
#     output = model(input_data)

# # 获取预测结果
# _, predicted_labels = torch.max(output, 1)

# print("预测结果:", predicted_labels)


Level protection and deep learning-LMLPHP

04-20 11:39