前言
比赛遇到的集群各节点的部署痛点
一个前提
在初赛的时候,为了快捷提供数据接口给后面的深度学习模型建立使用,我们将数据预处理独立出来,使用了最为简单的Python操作。在此,考虑到的是,我们的代码需要移植到评委所用的电脑当中进行验证,可能存在没有import某些库的情况,最后导致程序运行失败。
麻烦之处
在进入到决赛后,由于这两块的结合在一起的迫切需求,我们不得不又重新import我们库。然而在这块当中,如果我们只在Master节点,问题很简单,直接将库打包好,写个脚本就完事了。而在百度的BMR的spark集群里面,因为Slaves节点不能访问网络(如下图),因而我们要登录了Master节点之后,然后通过Master内网ssh到Slaves上,进而才能打开我们的脚本部署好我们的程序运行环境。
提出
这样子来说,我们有没有一个很好的办法,能通过Master上运行一个脚本,达到了整个集群的所有节点都自动部署我们的程序运行环境呢?经过阅读书籍《spark最佳实践》,了解到了Python的第三方库fabric。
fabric
首先请允许介绍一下fabric,具体使用方法可以查阅官方API Doc,在此我介绍一下我将使用到某一小部分。
执行本地任务
fabric提供了一个local("shell")
的接口,shell就是Linux上的shell命令。例如
from fabric.api import local
local('ls /root/') #ls root文件夹下的文件列表
执行远程任务
fabric的强大之处,不是它在本地做到执行命令,本地执行的事儿可以用原生shell来解决,而是能在远程的服务器上执行命令,哪怕远程的服务器上没有安装fabric。它是通过ssh方式实现的,因而我们需要定义一下三个参数:
env.hosts = ['ipaddress1', 'ipaddress2']
env.user = 'root'
env.password = 'fuckyou.'
通过设置ip,用户名以及用户名密码,我们可以使用run("shell")
,达到在远程服务器上执行我们所需要执行的任务。例如
from fabric.api import run, env
env.hosts = ['ipaddress1', 'ipaddress2']
env.user = 'root'
env.password = 'fuckyou.'
run('ls /root/') #ls root文件夹下的文件列表
打开某一个文件夹
有时候我们需要精准地打开某一个文件夹,之后执行该文件下的某一个脚本或者文件。这是,我们得使用以下两个接口:
本地
with lcd('/root/local/'):
local('cat local.txt') # cat 本地'/root/local/'下的local.txt文件
远程
with cd('/root/distance/'):
run('cat distance.txt') # cat 远程'/root/distance/'下的distance.txt文件
执行fabric任务
我们可以通过命令行
fab --fabfile=filename.py job_func
# filename.py为使用fabric写的Python文件
# job_func 为带有fabric的函数,即主要执行的函数
# 以上两个名称都是可以自取,下面的介绍当中,我的为job.py 与 job
socket
为什么会用到socket呢?在上一篇文章当中,我提及到在百度BMR的集群中,他们设置集群Slaves都是通过slaves的hostname的,而不是通过ip。而因为在使用fabric设置环境中的hosts的时候需要用到ip,那我们得通过hostname,进而找到ip。
你或许有疑问,为什么不直接设定Slaves的IP呢?但是百度BMR每次创建spark集群,它提供的内网IP都是不断在变动的,呈现出IP末端递增。
综上,还是使用hostname获取IP
gethostbyname接口
我们可以用过gethostbyname('hostname')
接口,传入hostname,然后得到一个IPV4的ip地址。
使用fabric编写各节点自动部署脚本
获取Slaves的hostname
和上一篇文章说道的一样,我们Slaves的hostname是藏在了百度BMR的这里:
'/opt/bmr/hadoop/etc/hadoop/slaves'
将hostname转化为ip,设置fabric的env参数
host_list = []
f = open(path, 'r')
slaves_name = f.read().split('\n')
for i in range(1, slaves_name.__len__()-1):
temp_name = slaves_name[i]
temp_ip = socket.gethostbyname(temp_name)
ip_port = temp_ip + ":22"
host_list.append(ip_port)
del temp_name
del temp_ip
del ip_port
env.user = 'root'
env.password = '*gdut728'
env.hosts = host_list
编写需要自动部署的job
在这里,我要自动部署的是:
1 下载Python第三方库jieba
2 在本地解压下载好的jieba压缩包
3 在本地,进入到解压好的文件夹中,安装jieba
4 将下载好的压缩包传送到Slaves节点上
5 在远程端,解压下载好的jieba压缩包
6 在远程端,进入到解压好的文件夹中,安装jieba
将上面步骤转化为代码,即
def job():
local_command = "wget https://pypi.python.org/packages/71/46/c6f9179f73b818d5827202ad1c4a94e371a29473b7f043b736b4dab6b8cd/jieba-0.39.zip#md5=ca00c0c82bf5b8935e9c4dd52671a5a9"
local(local_command)
jieba_unzip = "unzip jieba-0.39.zip"
jieba_path = "/root/jieba-0.39/"
jieba_install = "python setup.py install"
local(jieba_unzip)
with lcd(jieba_path):
local("ls")
local(jieba_install)
with lcd('/root/'):
put("jieba-0.39.zip", '/root')
run(jieba_unzip)
with cd(jieba_path):
run("ls")
run(jieba_install)
结言
最后,在我上篇文章提到的shell脚本中,最前面加上
yum -y install fabric && fab --fabfile=job.py job
输入./start-hadoop-spark.sh
,即可无忧无虑地部署好我要使用的程序运行环境。因为懒,因为麻烦,于是用Python外加shell写了自动部署的脚本。在这个过程中,学习到不少知识,也遇到不少麻烦,写下文章,希望可以减轻大家配置的烦恼~
结果如下:
Master:
Slaves1:
Slaves2:
参照
Fabric 中文文档 http://fabric-chs.readthedocs.io/zh_CN/chs/
Python远程部署利器Fabric详解 http://python.jobbole.com/87241/
socket.gethostbyname() https://docs.python.org/2/library/socket.html#socket.gethostbyname
文章出自kwongtai'blog[http://www.cnblogs.com/kwongtai],转载请标明出处!