目录
支持向量机SVM的详细原理
SVM的定义
SVM理论
Libsvm工具箱详解
简介
参数说明
易错及常见问题
完整代码和数据下载链接:基于支持向量机SVM的点火电流预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/88947558
SVM应用实例,基于支持向量机SVM的点火电流预测
代码
结果分析
展望
摘要
基于支持向量机SVM的点火电流预测,SVM原理,SVM工具箱详解,SVM常见改进方法
支持向量机SVM的详细原理
SVM的定义
支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。
(1)支持向量机(Support Vector Machine, SVM)是一种对数据进行二分类的广义线性分类器,其分类边界是对学习样本求解的最大间隔超平面。
(2)SVM使用铰链损失函数计算经验风险并在求解系统中加入了正则化项以优化结构风险,是一个具有稀疏性和稳健性的分类器 。
(3)SVM可以通过引入核函数进行非线性分类。
SVM理论
1,线性可分性
2,损失函数
3,核函数
Libsvm工具箱详解
简介
LIBSVM是台湾大学林智仁(Lin Chih-Jen)教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能。该软件可以解决C-SVM、ν-SVM、ε-SVR和ν-SVR等问题,包括基于一对一算法的多类模式识别问题。
主要参数说明
Options:可用的选项即表示的涵义如下
-s svm类型:SVM设置类型(默认0)
0 – C-SVC
1 --v-SVC
2 – 一类SVM
3 – e -SVR
4 – v-SVR
-t 核函数类型:核函数设置类型(默认2)
0 – 线性:u’v
1 – 多项式:(ru’v + coef0)^degree
2 – RBF函数:exp(-r|u-v|^2)
3 –sigmoid:tanh(ru’v + coef0)
-d degree:核函数中的degree设置(针对