带上耳机世界与我无关

带上耳机世界与我无关

集群环境

hd1:192.168.8.11 控制节点
hd2:192.168.8.12 工作节点
hd3:192.168.8.13 工作节点

本文介绍

k8s集群中部署prometheus、grafana、alertmanager,并且配置prometheus的动态、静态服务发现,实现对容器、物理节点、service、pod等资源指标监控,并在Grafana的web界面展示prometheus的监控指标,然后通过配置自定义告警规则,通过alertmanager实现qq、钉钉、微信报警。Promql 语法、prometheus数据类型。

1、Prometheus介绍?

Prometheus是一个开源的系统监控和报警系统,现在已也支持多种exporter采集数据,还支持pushgateway进行数据上报,经加入到CNCF基金会,成为继k8s之后第二个在CNCF托管的项目,在kubernetes容器管理系统中,通常会搭配prometheus进行监控,同时Prometheus性能足够支撑上万台规模的集群。

2、Prometheus特点?

1.多维度数据模型
每一个时间序列数据都由metric度量指标名称和它的标签labels键值对集合唯一确定:
这个metric度量指标名称指定监控目标系统的测量特征(如:http_requests_total- 接收http请求的总计数)。labels开启了Prometheus的多维数据模型:对于相同的度量名称,通过不同标签列表的结合, 会形成特定的度量维度实例。(例如:所有包含度量名称为/api/tracks的http请求,打上method=POST的标签,则形成了具体的http请求)。这个查询语言在这些度量和标签列表的基础上进行过滤和聚合。改变任何度量上的任何标签值,则会形成新的时间序列图。
2.灵活的查询语言(PromQL)
可以对采集的metrics指标进行加法,乘法,连接等操作;
3.可以直接在本地部署,不依赖其他分布式存储;
4.通过基于HTTP的pull方式采集时序数据;
5.可以通过中间网关pushgateway的方式把时间序列数据推送到prometheus server端;
6.可通过服务发现或者静态配置来发现目标服务对象(targets)。
7.有多种可视化图像界面,如Grafana等。
8.高效的存储,每个采样数据占3.5 bytes左右,300万的时间序列,30s间隔,保留60天,消耗磁盘大概200G。
9.做高可用,可以对数据做异地备份,联邦集群,部署多套prometheus,pushgateway上报数据

3、Prometheus组件介绍

1.Prometheus Server: 用于收集和存储时间序列数据。
2.Client Library: 客户端库,检测应用程序代码,当Prometheus抓取实例的HTTP端点时,客户端库会将所有跟踪的metrics指标的当前状态发送到prometheus server端。
3.Exporters: prometheus支持多种exporter,通过exporter可以采集metrics数据,然后发送到prometheus server端,所有向promtheus server提供监控数据的程序都可以被称为exporter
4.Alertmanager: 从 Prometheus server 端接收到 alerts 后,会进行去重,分组,并路由到相应的接收方,发出报警,常见的接收方式有:电子邮件,微信,钉钉, slack等。
5.Grafana:监控仪表盘,可视化监控数据
6.pushgateway: 各个目标主机可上报数据到pushgateway,然后prometheus server统一从pushgateway拉取数据。

Prometheus整个生态圈组成主要包括prometheus server,Exporter,pushgateway,alertmanager,grafana,Web ui界面,Prometheus server由三个部分组成,Retrieval,Storage,PromQL
1.Retrieval负责在活跃的target主机上抓取监控指标数据
2.Storage存储主要是把采集到的数据存储到磁盘中
3.PromQL是Prometheus提供的查询语言模块。
4、Prometheus工作流程

1.Prometheus server可定期从活跃的(up)目标主机上(target)拉取监控指标数据,目标主机的监控数据可通过配置静态job或者服务发现的方式被prometheus server采集到,这种方式默认的pull方式拉取指标;也可通过pushgateway把采集的数据上报到prometheus server中;还可通过一些组件自带的exporter采集相应组件的数据;
2.Prometheus server把采集到的监控指标数据保存到本地磁盘或者数据库;
3.Prometheus采集的监控指标数据按时间序列存储,通过配置报警规则,把触发的报警发送到alertmanager
4.Alertmanager通过配置报警接收方,发送报警到邮件,微信或者钉钉等
5.Prometheus 自带的web ui界面提供PromQL查询语言,可查询监控数据
6.Grafana可接入prometheus数据源,把监控数据以图形化形式展示出

5、Prometheus的四种数据类型
6.1 Counter

Counter是计数器类型:
1、Counter 用于累计值,例如记录请求次数、任务完成数、错误发生次数。
2、一直增加,不会减少。
3、重启进程后,会被重置。
例如:http_response_total{method=“GET”,endpoint=“/api/tracks”} 100
http_response_total{method=“GET”,endpoint=“/api/tracks”} 160

Counter 类型数据可以让用户方便的了解事件产生的速率的变化,在PromQL内置的相关操作函数可以提供相应的分析,比如以HTTP应用请求量来进行说明:
1、通过rate()函数获取HTTP请求量的增长率
rate(http_requests_total[5m])
2、查询当前系统中,访问量前10的HTTP地址
topk(10, http_requests_total)

6.2 Gauge

Gauge是测量器类型:
1、Gauge是常规数值,例如温度变化、内存使用变化。
2、可变大,可变小。
3、重启进程后,会被重置

例如:
memory_usage_bytes{host=“master-01”} 100
memory_usage_bytes{host=“master-01”} 30
memory_usage_bytes{host=“master-01”} 50
memory_usage_bytes{host=“master-01”} 80

对于 Gauge 类型的监控指标,通过 PromQL 内置函数 delta() 可以获取样本在一段时间内的变化情况,例如,计算 CPU 温度在两小时内的差异:
dalta(cpu_temp_celsius{host=“zeus”}[2h])

你还可以通过PromQL 内置函数 predict_linear() 基于简单线性回归的方式,对样本数据的变化趋势做出预测。例如,基于 2 小时的样本数据,来预测主机可用磁盘空间在 4 个小时之后的剩余情况:
predict_linear(node_filesystem_free{job=“node”}[2h], 4 * 3600) < 0

6.3 histogram

histogram是柱状图,在Prometheus系统的查询语言中,有三种作用:
1、在一段时间范围内对数据进行采样(通常是请求持续时间或响应大小等),并将其计入可配置的存储桶(bucket)中. 后续可通过指定区间筛选样本,也可以统计样本总数,最后一般将数据展示为直方图。
2、对每个采样点值累计和(sum)
3、对采样点的次数累计和(count)

度量指标名称: [basename]_上面三类的作用度量指标名称
1、[basename]_bucket{le=“上边界”}, 这个值为小于等于上边界的所有采样点数量
2、[basename]_sum
3、[basename]_count

小结:如果定义一个度量类型为Histogram,则Prometheus会自动生成三个对应的指标

6.4 summary

与 Histogram 类型类似,用于表示一段时间内的数据采样结果(通常是请求持续时间或响应大小等),但它直接存储了分位数(通过客户端计算,然后展示出来),而不是通过区间来计算。它也有三种作用:
1、对于每个采样点进行统计,并形成分位图。(如:正态分布一样,统计低于60分不及格的同学比例,统计低于80分的同学比例,统计低于95分的同学比例)
2、统计班上所有同学的总成绩(sum)
3、统计班上同学的考试总人数(count)

node-exporter组件安装和配置

node-exporter可以采集机器(物理机、虚拟机、云主机等)的监控指标数据,能够采集到的指标包括CPU, 内存,磁盘,网络,文件数等信息。

[root@hd1.com ~]# kubectl create ns monitor-sa
[root@hd1.com ~]# ctr -n k8s.io images import node-exporter.tar.gz 
[root@hd2.com ~]# ctr -n k8s.io images import node-exporter.tar.gz 
[root@hd3.com ~]# ctr -n k8s.io images import node-exporter.tar.gz 
cat  node-export.yaml  
apiVersion: apps/v1
kind: DaemonSet  #可以保证k8s集群的每个节点都运行完全一样的pod
metadata:
  name: node-exporter
  namespace: monitor-sa
  labels:
    name: node-exporter
spec:
  selector:
    matchLabels:
     name: node-exporter
  template:
    metadata:
      labels:
        name: node-exporter
    spec:
      hostPID: true
      hostIPC: true
      hostNetwork: true
            containers:
      - name: node-exporter
        image: docker.io/prom/node-exporter:v0.16.0
        ports:
        - containerPort: 9100
        resources:
          requests:
            cpu: 0.15  #这个容器运行至少需要0.15核cpu
        securityContext:
          privileged: true  #开启特权模式
        args:
        - --path.procfs  #配置挂载宿主机(node节点)的路径
        - /host/proc
        - --path.sysfs  #配置挂载宿主机(node节点)的路径
        - /host/sys
        - --collector.filesystem.ignored-mount-points
        - '"^/(sys|proc|dev|host|etc)($|/)"'
#通过正则表达式忽略某些文件系统挂载点的信息收集
        volumeMounts:
        - name: dev
          mountPath: /host/dev
        - name: proc
          mountPath: /host/proc
        - name: sys
          mountPath: /host/sys
        - name: rootfs
          mountPath: /rootfs
#将主机/dev、/proc、/sys这些目录挂在到容器中,这是因为我们采集的很多节点数据都是通过这些文件来获取系统信息的。
      tolerations:
      - key: "node-role.kubernetes.io/control-plane"
        operator: "Exists"
        effect: "NoSchedule"
      volumes:
        - name: proc
          hostPath:
            path: /proc
        - name: dev
          hostPath:
            path: /dev
        - name: sys
          hostPath:
            path: /sys
        - name: rootfs
          hostPath:
            path: /
#通过kubectl apply更新node-exporter.yaml文件
[root@hd1.com]# kubectl apply -f node-export.yaml
#查看node-exporter是否部署成功
[root@hd1.com]# kubectl get pods -n monitor-sa
显示如下,看到pod的状态都是running,说明部署成功
NAME                  READY   STATUS    RESTARTS   AGE
node-exporter-9qpkd   1/1     Running   0          89s
node-exporter-zqmnk   1/1     Running   0          89s       
通过node-exporter采集数据

curl  http://主机ip:9100/metrics

#node-export默认的监听端口是9100,可以看到当前主机获取到的所有监控数据 

curl http://192.168.1.11:9100/metrics | grep node_cpu_seconds
显示192.168.1.11主机cpu的使用情况

# HELP node_cpu_seconds_total Seconds the cpus spent in each mode.
# TYPE node_cpu_seconds_total counter
node_cpu_seconds_total{cpu="0",mode="idle"} 72963.37
node_cpu_seconds_total{cpu="0",mode="iowait"} 9.35
node_cpu_seconds_total{cpu="0",mode="irq"} 0
node_cpu_seconds_total{cpu="0",mode="nice"} 0
node_cpu_seconds_total{cpu="0",mode="softirq"} 151.4
node_cpu_seconds_total{cpu="0",mode="steal"} 0
node_cpu_seconds_total{cpu="0",mode="system"} 656.12
node_cpu_seconds_total{cpu="0",mode="user"} 267.1

#HELP:解释当前指标的含义,上面表示在每种模式下node节点的cpu花费的时间,以s为单位
#TYPE:说明当前指标的数据类型,上面是counter类型
node_cpu_seconds_total{cpu="0",mode="idle"} :
cpu0上idle进程占用CPU的总时间,CPU占用时间是一个只增不减的度量指标,从类型中也可以看出node_cpu的数据类型是counter(计数器)

counter计数器:只是采集递增的指标


curl http://192.168.1.11:9100/metrics | grep node_load
# HELP node_load1 1m load average.
# TYPE node_load1 gauge
node_load1 0.1

node_load1该指标反映了当前主机在最近一分钟以内的负载情况,系统的负载情况会随系统资源的使用而变化,因此node_load1反映的是当前状态,数据可能增加也可能减少,从注释中可以看出当前指标类型为gauge(标准尺寸)
gauge标准尺寸:统计的指标可增加可减少
     

Prometheus server安装和配置

后续可联系博主

12-28 04:21