自动扩缩容架构图

k8s 自动扩缩容HPA原理及adapter配置详解👑-LMLPHP

我们先来看一下自动扩缩容的原理,在k8s中HPA这个模块的逻辑会定时请求api server 获取相应的pod或者CRD或者其他资源的指标信息,这些指标信息是用户创建HPA的yaml配置文件时指定的。

api server收到请求后,根据请求的api group,api version 转发给内部的api service服务进行处理,当我们想让k8s借用prometheus的相关指标进行扩缩容时,就需要在集群里用api service的方式安装prometheus adapter,它会将发往api server的请求经过包装,转发到prometheus服务器获取对应指标信息,然后将结果经过封装返回给客户端即HPA模块。HPA模块收到指标后,在根据自身配置文件中的target值判断是否需要进行自动扩缩容。

api server 处理请求的方式

既然提到了prometheus adapter是以api service 方式安装到k8s集群中的,我再对api server的架构已经处理请求的方式再阐述下。

api server 处理请求的方式是链式的,你可以简单的理解为api server里有多个http server ,当某个请求的路径不属于某个http server处理范畴内的话,会将这个请求委托给下一个http server进行处理。同时,k8s允许用户自定义api service作为http server,prometheus adapter 就是一个自定义的api service。

api server 请求路径格式

向api server发送http请求,请求格式是按一定规则进行组装的,我主要查看了HPA模块源码,所以拿这块去举例,hpa发往api server的请求是将api version和api group 以及要请求资源的命名空间,资源名拼接到一起组成的路径。如下:

k8s 自动扩缩容HPA原理及adapter配置详解👑-LMLPHP

不同的HPA指标类型这个路径的拼接会有所不同(下面会详细讲到),但是整体的api风格是和这个一致的。

当HPA在向api server发送请求的时候则是根据不同的扩缩容指标类型选择了不同的api group 去发送请求。

HPA 扩缩容的4种指标类型

接下来,我们来详细看下,HPA扩缩容的4种指标类型。

Pods

先看第一种pods类型,它表示的是由pod产生的指标, 其在HPA声明的配置yaml文件里写法如下,

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
	name: sample-app
	namespace: default
spec:
	maxReplicas: 10
	minReplicas: 2
	metrics:
	  - pods:
		   metric:
			  name: http_requests
			  selector:
		        matchLabels:
		          <label-key>: <label-value>
		   target:
			  averageValue: 500m
			  type: AverageValue
		type: Pods
scaleTargetRef:
	apiVersion: apps/v1
	kind: Deployment
	name: sample-app

可以看到spec.metrics.type 值为pods类型,HPA的pods 指标类型 是指pod这个资源对象产生的指标,其中定义了指标名为http_requests,最终发往api server的url path如下所示,

/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/pods/*/http_requests?labelSelector=<label-key>=<label-value>

api server 收到这个请求后会将请求转发给prometheus adapter,那么prometheus adapter 又是如何将http_requests 与具体的prometheus中的指标对应起来的呢?

prometheus adapter在启动的时候我们会配置一个规则配置文件,在这个文件定义了这个映射关系,下面是这针这种类型的指标配置规则部分,

rules:
- seriesQuery: 'http_requests_total{}'
  resources:
    overrides:
      kubernetes_namespace: {resource: "namespace"}
      kubernetes_pod_name: {resource: "pods"}
  name:
    matches: "http_requests_total"
    as: "http_requests"
  metricsQuery: 'sum(rate(<<.Series>>{<<.LabelMatchers>>}[2m])) by (<<.GroupBy>>)'

我们将hpa配置文件和发往api server的请求以及prometheus adapter的规则文件结合起来,看看prometheus adapter 规则文件里那些模板变量的含义。

首先是hpa的配置文件中指定了metric.name是http_requests,http_requests在prometheus adapter的配置文件里是将prometheus的http_requests_total与之对应了起来,并且从规则配置文件的resources.overrides 配置中可以发现namespace和pods资源在指标http_requests_total中会有kubernetes_namespace和kubernetes_pod_name标签与之对应,这层关系其实主要是为了metricsQuery 中模板变量的替换。

metricsQuery 中 <<.Series>> 其实就是seriesQuery这部分。

<<.LabelMatchers>> 是筛选指标时的标签,在hpa里面我们指定了metric.selector,发往api server的请求里的参数labelSelector就会替代<<.LabelMatchers>>模板变量,同时发往api server请求中的namespace的值也会写到<<.LabelMatchers>>中,并且namespace的对应标签名就是resources.overrides中定义的kubernetes_namespace。

<<.GroupBy>> 变量在这里会将k8s的resource资源类型作为分组的维度,并且在这个场景下,在发往api server的请求中,k8s的资源是pods类型,而pods类型在指标中的标签名是kubernetes_pod_name。

所以最终,在prometheus 中进行查询时执行的promql语句为,

sum(rate(http_requests_total{"kubernetes_namespace":"default","<label-key>":"<label-value>"}[2m])) by (kubernetes_pod_name)

Object

在看了pods类型的hpa指标后,我们再来看看Object类型的指标是如何配置的,因为在k8s里资源类型除了pod类型,还有其他类型,所以如果由其他资源类型产生的指标,则由Object来表示。

先看下hpa的yaml配置文件是如何写的。

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
	name: sample-app
	namespace: default
spec:
	maxReplicas: 10
	minReplicas: 2
	metrics:
	 - object:  
		metric:  
		  name: requests-per-second  
		describedObject:  
		  apiVersion: extensions/v1beta1  
		  kind: Ingress  
		  name: main-route  
		target:  
		  type: Value  
	      value: 2k
	   type: Object 
scaleTargetRef:
	apiVersion: apps/v1
	kind: Deployment
	name: sample-app

发往api server的请求格式如下

/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/ingress/main-route/requests-per-second

prometheus adapter配置此类规则和Pods类型类似,模板变量解析方式也是类似,唯一有点不一样的是此时的<<.GroupBy>> 模板变量会被ingress/main-route 也就是资源名加上资源示例名替代。

Resource, ContainerResource

接着看一下hpa中的Resource类型的指标配置,它表示对pod的cpu或者内存值来进行扩缩容,本质上可以用Pods 类型的配置来代替这部分配置,那为什么还有Resource类型呢?因为Resource出来的时候还没有Pods 类型。

Kubernetes 1.20 在 HorizontalPodAutoscaler (HPA) 中引入了 ContainerResource 类型指标,不论是Resource还是ContainerResource都只能对cpu和内存这两个维度进行监控,它们的区别如下,

Resource 计算pod的资源使用率是

sum{每个容器的资源使用量} / sum{每个容器的资源请求}

但是一个pod有多个容器,可能会出现单个容器资源使用率高,但是平均下来每个容器资源使用率低的情况,而ContainerResource 则能够指定以pod中的哪个容器拿来计算扩容指标,能够提供更准确的扩容机制。

ContainerResource在hpa的yaml配置文件中配置如下,其中container标签指明了容器名称。

type: ContainerResource
containerResource:
  name: cpu
  container: application
  target:
    type: Utilization
    averageUtilization: 60

而Resource类型的扩容指标则是针对pod中所有容器计算指标,

type: Resource
resource:
  name: cpu
  target:
    type: Utilization
    averageUtilization: 60

它们发往api server 的请求格式如下

/apis/metrics.k8s.io/v1beta1/namespaces/default/pods

prometheus adapter 在收到这个请求后,会将对应的pod的cpu和内存信息全部返回,然后k8s的hpa模块筛选其需要用到的部分,像ContainerResource就会筛选返回结果中和container标签值代表的容器名称一样的指标进行计算。

prometheus adapter针对此类型的指标规则配置如下, 其中的containerLabel 表明了指标中容器名称是用哪个标签表示的,此时的<<.GroupBy>>模板变量 会由pod资源名称和容器名标签两个维度替代。

"resourceRules":  
  "cpu":  
    "containerLabel": "container"  
    "containerQuery": |  
      sum by (<<.GroupBy>>) (  
        irate (  
            container_cpu_usage_seconds_total{<<.LabelMatchers>>,container!="",pod!=""}[4m]  
        )  
      )  
    "nodeQuery": |  
      sum by (<<.GroupBy>>) (  
        irate(  
            node_cpu_usage_seconds_total{<<.LabelMatchers>>}[4m]  
        )  
      )  
    "resources":  
      "overrides":  
        "namespace":  
          "resource": "namespace"  
        "node":  
          "resource": "node"  
        "pod":  
          "resource": "pod"  
  "memory":  
    "containerLabel": "container"  
    "containerQuery": |  
      sum by (<<.GroupBy>>) (  
        container_memory_working_set_bytes{<<.LabelMatchers>>,container!="",pod!=""}  
      )  
    "nodeQuery": |  
      sum by (<<.GroupBy>>) (  
        node_memory_working_set_bytes{<<.LabelMatchers>>}  
      )  
    "resources":  
      "overrides":  
        "node":  
          "resource": "node"  
        "namespace":  
          "resource": "namespace"  
        "pod":  
          "resource": "pod"  
  "window": "5m"

External

最后,我们来看下external 类型的扩容指标如何配置,上面讲到的hpa 扩缩容指标类型都是在k8s集群里产生的指标,它们都限定在了一个namespace里面,除此以外,hpa模块还允许配置第三方的指标类型,比如集群外部的消息队列产生的指标,这类型的指标被称作External类型。 在hpa里配置案例如下,

type: External  
external:  
	metric:  
		name: queue_messages_cnt  
		selector:  
			matchLabels:  
				app: "lanpangzi"  
		# External指标类型下只支持Value和AverageValue类型的目标值  
	target:  
		type: AverageValue  
		averageValue: 30

发往api server的请求格式如下

/apis/external.metrics.k8s.io/v1beta1/namespaces/default/queue_messages_cnt

由于外部指标和namespace无关,所以在配置prometheus adapter的规则配置文件的时候,指定下指标是namespace无关的。

externalRules:  
- seriesQuery: 'queue_messages_cnt'  
resources:  
	namespaced: false  
name:  
	matches: 'queue_messages_cnt' 
	as: 'queue_messages_cnt'  
metricsQuery: avg(<<.Series>>{<<.LabelMatchers>>})  

总结

探索HPA配置的含义过程中,其实可以发现k8s在针对HPA扩容依据的拓展方式上,就是规定了3组api group(metrics.k8s.io,external.metrics.k8s.io,custom.metrics.k8s.io),并且用基本一致的http请求,让第三方(prometheus adapter)在声明为api service 的时候指定为对应的api group,然后解析请求路径和参数来进而对prometheus查询 即完成了对HPA扩容指标的查询。

关于prometheus adapter更多的配置案例建议直接看prometheus adapter的doc目录下的示例。

09-23 01:15