总结:
1.stack: 将数据的列索引转换为行索引(列索引可以简单理解为列名)
2.unstack:将数据的行索引转换为列索引
3.stack和unstack默认操作为最内层,可以用level参数指定操作层.
4.stack和unstack默认旋转轴的级别将会成果结果中的最低级别(最内层)
5.stack转换dataframe时,若只有一层列索引则转换后的类型为series,否则为dataframe
unstack转换dataframe时,若只有一层行索引,情况同上
import pandas as pd df = pd.DataFrame({ '类别':['水果'] * 3 + ['蔬菜'] * 3 ,
'名称':['苹果','梨','杏','菠菜','黄瓜','茄子'],
'价格':[7,8,9,10,11,12]})
print(df)
print(df.stack())
# 如下实现了行索引是类别,列索引是名称,交点处是价格
df.set_index(['类别','名称'], inplace=True)
print(df.unstack())
# 类别 名称 价格
# 0 水果 苹果 7
# 1 水果 梨 8
# 2 水果 杏 9
# 3 蔬菜 菠菜 10
# 4 蔬菜 黄瓜 11
# 5 蔬菜 茄子 12
# 0 类别 水果
# 名称 苹果
# 价格 7
# 1 类别 水果
# 名称 梨
# 价格 8
# 2 类别 水果
# 名称 杏
# 价格 9
# 3 类别 蔬菜
# 名称 菠菜
# 价格 10
# 4 类别 蔬菜
# 名称 黄瓜
# 价格 11
# 5 类别 蔬菜
# 名称 茄子
# 价格 12
# dtype: object
# 价格
# 名称 杏 梨 苹果 茄子 菠菜 黄瓜
# 类别
# 水果 9.0 8.0 7.0 NaN NaN NaN
# 蔬菜 NaN NaN NaN 12.0 10.0 11.0
6 unstack对series做转换时,原先的行索引会消失,对Dataframe做转换时,不会消失
import pandas as pd df = pd.DataFrame({ '类别':['水果'] * 3 + ['蔬菜'] * 3 ,
'名称':['苹果','梨','杏','菠菜','黄瓜','茄子'],
'价格':[7,8,9,10,11,12]})
print(df)
# 注意当对series类型做unstack()的时候,原先的行索引会消失
# 但对Dataframe类型做unstack()的时候,不会消失 # 会消失
print(df.set_index(['名称','类别'])['价格'].unstack())
# 不消失
print(df.set_index(['名称','类别']).unstack())
print(df.set_index(['名称','类别'])[['价格']].unstack())
# 价格 名称 类别
# 0 7 苹果 水果
# 1 8 梨 水果
# 2 9 杏 水果
# 3 10 菠菜 蔬菜
# 4 11 黄瓜 蔬菜
# 5 12 茄子 蔬菜
# 类别 水果 蔬菜
# 名称
# 杏 9.0 NaN
# 梨 8.0 NaN
# 苹果 7.0 NaN
# 茄子 NaN 12.0
# 菠菜 NaN 10.0
# 黄瓜 NaN 11.0
# 价格
# 类别 水果 蔬菜
# 名称
# 杏 9.0 NaN
# 梨 8.0 NaN
# 苹果 7.0 NaN
# 茄子 NaN 12.0
# 菠菜 NaN 10.0
# 黄瓜 NaN 11.0
# 价格
# 类别 水果 蔬菜
# 名称
# 杏 9.0 NaN
# 梨 8.0 NaN
# 苹果 7.0 NaN
# 茄子 NaN 12.0
# 菠菜 NaN 10.0
# 黄瓜 NaN 11.0
参考: https://www.cnblogs.com/bambipai/p/7658311.html
7 通俗的说unstack()是把索引从左边到上边,stack()是从上边到左边.下面是把多重索引变为单重索引的方法.
import pandas as pd
a = pd.DataFrame({ 'id':['j','p','p','s'],
'RESULT_STRING':[1,2,3,4],
'values_max':[8,9,9,8],
'values_min':[5,5,5,5]
})
print(a)
print(a.set_index(['id','RESULT_STRING']).unstack())
r = a.set_index(['id','RESULT_STRING']).unstack().reset_index()
print(r)
# 由于是多重索引,把列名改成单重,更容易后序处理,这里把两个列名合并了.
r.columns = [x[0]+str(x[1]) for x in r.columns]
print(r)
# id RESULT_STRING values_max values_min
# 0 j 1 8 5
# 1 p 2 9 5
# 2 p 3 9 5
# 3 s 4 8 5
# values_max values_min
# RESULT_STRING 1 2 3 4 1 2 3 4
# id
# j 8.0 NaN NaN NaN 5.0 NaN NaN NaN
# p NaN 9.0 9.0 NaN NaN 5.0 5.0 NaN
# s NaN NaN NaN 8.0 NaN NaN NaN 5.0
# id values_max values_min
# RESULT_STRING 1 2 3 4 1 2 3 4
# 0 j 8.0 NaN NaN NaN 5.0 NaN NaN NaN
# 1 p NaN 9.0 9.0 NaN NaN 5.0 5.0 NaN
# 2 s NaN NaN NaN 8.0 NaN NaN NaN 5.0
# id values_max1 values_max2 ... values_min2 values_min3 values_min4
# 0 j 8.0 NaN ... NaN NaN NaN
# 1 p NaN 9.0 ... 5.0 5.0 NaN
# 2 s NaN NaN ... NaN NaN 5.0
#
# [3 rows x 9 columns]
参考: https://www.jb51.net/article/150975.htm
ttt