这里用torch 做一个最简单的测试
目标就是我们用torch 建立一个一层的网络,然后拟合一组可以回归的数据
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2*torch.rand(x.size()) x, y = Variable(x), Variable(y)
这里我们先早出来假数据,这里需要注意的是,最新版本的torch已经不需要variable了
接着我们来搭建我们的网络
class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output) # 前向传播
def forward(self, x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
我们做了个 1-10-1这样的单隐藏层的网络
net = Net(n_feature=1, n_hidden=10, n_output=1)
print(net) # define optimizer
optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
loss_func = torch.nn.MSELoss()
接着我们选SGD来优化,选MSE做loss function
开始训练
plt.ion() # begin training
for t in range(200):
prediction = net(x)
loss = loss_func(prediction, y) # must be (1. nn output, 2. target) optimizer.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
if t % 5 == 0:
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1) plt.ioff()
plt.show()
大概效果是这样