题目链接:http://codeforces.com/problemset/problem/1166/D

题目大意

  给定序列的第一个元素 a 和最后一个元素 b 还有一个限制 m,请构造一个序列,序列的第 i 项 x 满足 $x_i = \sum_{i = 1}^{i - 1} + r_i,1 \leq r_i \leq m$。

分析

  令 r 分别全 1 和全 m,可以得到$2^{i - 2} * (a + 1) \leq x_i \leq 2^{i - 2} * (a + m), i \geq 2$。
  因此,如果以 b 为第 k 个元素能够构成一个序列,那么 b 一定满足$2^{k - 2} * (a + 1) \leq b \leq 2^{k - 2} * (a + m), k \geq 2$。
  反过来,如果存在 k 使 b 满足$2^{k - 2} * (a + 1) \leq b \leq 2^{k - 2} * (a + m), k \geq 2$,那么是否一定能构成一个序列呢?其实是可以的,证明如下:

$$
\begin{align*}
&∵\ x_i = (\sum_{j = 1}^{j - 1} x_j) + r_i,1 \leq r_i \leq m,i \geq 2 \\
&∵\ \sum_{j = 1}^{j - 1} x_j = 2 * x_{i - 1} - r_{i - 1} \\
&∴\ x_i = 2 * x_{i - 1} + r_i - r_{i - 1} \\
&∵\ x_2 = a + r_2 \\
&∴\ x_i = 2^{i - 2} * a + 2^{i - 3} * r_2 + 2^{i - 4} * r_3 + \dots + 2 * r_{i - 2} + r_{i - 1} + r_i \\
&∴\ x_i = 2^{i - 2} * a + r_i + (\sum_{j = 0}^{i - 3} 2^j * r_{i - j - 1}) \\
\ &设 h = r_k,d_i = r_k - h,1 - m \leq d_i \leq m - 1,1 \leq h \leq m \\
&∴\ x_i = 2^{i - 2} * a + h + (\sum_{j = 0}^{i - 3} 2^j * (d_{i - j - 1} + h)) \\
&∴\ x_i = 2^{i - 2} * (a + h) + (\sum_{j = 0}^{i - 3} 2^j * d_{i - j - 1}) \\
\ &令 d_{i - j - 1} = 0\ or \ 1,0 \leq j \leq i - 3 \\
\ &于是有(\sum_{j = 0}^{i - 3} 2^j * d_{i - j - 1}) < 2^{i - 2} \\
&∴\ x_i = 2^{i - 2} * (a + h) + (\sum_{j = 0}^{i - 3} 2^j * d_{i - j - 1}) 满足 2^{i - 2} * (a + 1) \leq x_i \leq 2^{i - 2} * (a + m), i \geq 2
\end{align*}
$$

  至此我们找到了 $r_i$ 的一种赋值方案,使得 $2^{i - 2} * (a + 1) \leq x_i \leq 2^{i - 2} * (a + m), i \geq 2$。

  应用到通项公式后我们发现: $x_{i - 1} = \frac{x_i + r_{i - 1} - r_i}{2} = \frac{x_i + p_i}{2},p_i \in \{-1, 0, 1\}$。

  p 的值视 x 而定,且满足$2 \ | \ (x_i + p_i)$。

  那么序列 p 中把 0 除外后的序列必然是 -1,1,-1交错的,可以用反证法证明。

  如果 p == p == 1,那么 r - r == 2,与 |r - r| == |d - d| <= 1 矛盾。

  据此可以从尾部开始向前构造序列。

代码如下

 #include <bits/stdc++.h>
using namespace std; #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define Rep(i,n) for (int i = 0; i < (n); ++i)
#define For(i,s,t) for (int i = (s); i <= (t); ++i)
#define rFor(i,t,s) for (int i = (t); i >= (s); --i)
#define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
#define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
#define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
#define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) #define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl #define LOWBIT(x) ((x)&(-x)) #define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin()) #define ms0(a) memset(a,0,sizeof(a))
#define msI(a) memset(a,inf,sizeof(a))
#define msM(a) memset(a,-1,sizeof(a)) #define MP make_pair
#define PB push_back
#define ft first
#define sd second template<typename T1, typename T2>
istream &operator>>(istream &in, pair<T1, T2> &p) {
in >> p.first >> p.second;
return in;
} template<typename T>
istream &operator>>(istream &in, vector<T> &v) {
for (auto &x: v)
in >> x;
return in;
} template<typename T1, typename T2>
ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
out << "[" << p.first << ", " << p.second << "]" << "\n";
return out;
} inline int gc(){
static const int BUF = 1e7;
static char buf[BUF], *bg = buf + BUF, *ed = bg; if(bg == ed) fread(bg = buf, , BUF, stdin);
return *bg++;
} inline int ri(){
int x = , f = , c = gc();
for(; c<||c>; f = c=='-'?-:f, c=gc());
for(; c>&&c<; x = x* + c - , c=gc());
return x*f;
} typedef long long LL;
typedef unsigned long long uLL;
typedef pair< double, double > PDD;
typedef pair< int, int > PII;
typedef pair< string, int > PSI;
typedef set< int > SI;
typedef vector< int > VI;
typedef map< int, int > MII;
typedef pair< LL, LL > PLL;
typedef vector< LL > VL;
typedef vector< VL > VVL;
const double EPS = 1e-;
const LL inf = 0x7fffffff;
const LL infLL = 0x7fffffffffffffffLL;
const LL mod = 1e18 + ;
const int maxN = 2e5 + ;
const LL ONE = ;
const LL evenBits = 0xaaaaaaaaaaaaaaaa;
const LL oddBits = 0x5555555555555555; int q;
LL a, b, m, k;
LL x[]; int main(){
INIT();
cin >> q;
while(q--) {
cin >> a >> b >> m;
LL p = ;
k = ;
// 找使得 b <= p * (a + m) 的最小 p
while(b > p * (a + m)) {
++k;
p <<= ;
}
// 在 a != b 的情况下,只要满足 p * (a + 1) <= b <= p * (a + m),就一定可以构造
if(b >= p * (a + )) {
cout << k << " ";
x[] = a;
x[k] = b;
int p = ;
rFor(i, k - , ) {
if(x[i + ] % == ) x[i] = x[i + ] >> ;
else {
x[i] = (x[i + ] + p) >> ;
p = -p;
}
}
For(i, , k) cout << x[i] << " " << endl;
cout << endl;
}
else if(a == b) cout << "1 " << a << endl;
else cout << - << endl;
}
return ;
}

大佬代码如下

  和我的代码效果是一样的,但我死活推不出原理,只能先搁着里了。

 #include <bits/stdc++.h>
using namespace std; #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define Rep(i,n) for (int i = 0; i < (n); ++i)
#define For(i,s,t) for (int i = (s); i <= (t); ++i)
#define rFor(i,t,s) for (int i = (t); i >= (s); --i)
#define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
#define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
#define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
#define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) #define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl #define LOWBIT(x) ((x)&(-x)) #define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin()) #define ms0(a) memset(a,0,sizeof(a))
#define msI(a) memset(a,inf,sizeof(a))
#define msM(a) memset(a,-1,sizeof(a)) #define MP make_pair
#define PB push_back
#define ft first
#define sd second template<typename T1, typename T2>
istream &operator>>(istream &in, pair<T1, T2> &p) {
in >> p.first >> p.second;
return in;
} template<typename T>
istream &operator>>(istream &in, vector<T> &v) {
for (auto &x: v)
in >> x;
return in;
} template<typename T1, typename T2>
ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
out << "[" << p.first << ", " << p.second << "]" << "\n";
return out;
} inline int gc(){
static const int BUF = 1e7;
static char buf[BUF], *bg = buf + BUF, *ed = bg; if(bg == ed) fread(bg = buf, , BUF, stdin);
return *bg++;
} inline int ri(){
int x = , f = , c = gc();
for(; c<||c>; f = c=='-'?-:f, c=gc());
for(; c>&&c<; x = x* + c - , c=gc());
return x*f;
} typedef long long LL;
typedef unsigned long long uLL;
typedef pair< double, double > PDD;
typedef pair< int, int > PII;
typedef pair< string, int > PSI;
typedef set< int > SI;
typedef vector< int > VI;
typedef map< int, int > MII;
typedef pair< LL, LL > PLL;
typedef vector< LL > VL;
typedef vector< VL > VVL;
const double EPS = 1e-;
const LL inf = 0x7fffffff;
const LL infLL = 0x7fffffffffffffffLL;
const LL mod = 1e18 + ;
const int maxN = 2e5 + ;
const LL ONE = ;
const LL evenBits = 0xaaaaaaaaaaaaaaaa;
const LL oddBits = 0x5555555555555555; int q;
LL a, b, m, k; int main(){
INIT();
cin >> q;
while(q--) {
cin >> a >> b >> m;
LL p = ;
k = ;
// 找使得 b <= p * (a + m) 的最小 p
while(b > p * (a + m)) {
++k;
p <<= ;
}
// 在 a != b 的情况下,只要满足 p * (a + 1) <= b <= p * (a + m),就一定可以构造
if(b >= p * (a + )) {
cout << k << " " << a << " ";
For(i, , k - ) cout << (((b >> (k - i - )) + ) >> ) << " ";
cout << b << endl;
}
else if(a == b) cout << "1 " << a << endl;
else cout << - << endl;
}
return ;
}
05-11 19:58
查看更多