[Apio2009]Oil

Time Limit: 15 Sec  Memory Limit: 162 MB
Submit: 2300  Solved: 932
[Submit][Status][Discuss]

Description

采油区域 Siruseri政府决定将石油资源丰富的Navalur省的土地拍卖给私人承包商以建立油井。被拍卖的整块土地为一个矩形区域,被划分为M×N个小块。 Siruseri地质调查局有关于Navalur土地石油储量的估测数据。这些数据表示为M×N个非负整数,即对每一小块土地石油储量的估计值。 为了避免出现垄断,政府规定每一个承包商只能承包一个由K×K块相连的土地构成的正方形区域。 AoE石油联合公司由三个承包商组成,他们想选择三块互不相交的K×K的区域使得总的收益最大。 例如,假设石油储量的估计值如下: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 1 1 1 1 8 8 8 8 8 1 1 1 1 8 8 8 8 8 1 1 1 1 1 1 1 8 8 8 1 1 1 1 1 1 1 1 8 8 8 1 1 1 1 1 1 9 9 9 1 1 1 1 1 1 9 9 9 如果K = 2, AoE公司可以承包的区域的石油储量总和为100, 如果K = 3, AoE公司可以承包的区域的石油储量总和为208。 AoE公司雇佣你来写一个程序,帮助计算出他们可以承包的区域的石油储量之和的最大值。

Input

输入第一行包含三个整数M, N, K,其中M和N是矩形区域的行数和列数,K是每一个承包商承包的正方形的大小(边长的块数)。接下来M行,每行有N个非负整数表示这一行每一小块土地的石油储量的估计值

Output

输出只包含一个整数,表示AoE公司可以承包的区域的石油储量之和的最大值。

Sample Input

9 9 3
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 8 8 8 8 8 1 1 1
1 8 8 8 8 8 1 1 1
1 8 8 8 8 8 1 1 1
1 1 1 1 8 8 8 1 1
1 1 1 1 1 1 8 8 8
1 1 1 1 1 1 9 9 9
1 1 1 1 1 1 9 9 9

Sample Output

208

HINT

 bzoj1177 [Apio2009]Oil 二维前缀最大值,和-LMLPHP

对于复杂度的,话,是n^2的吧,数据范围因为时间复杂度和输入范围一样,所以可以过。
 
 #include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 100000000000000LL
#define pa pair<int,int>
#define ll long long
#define N 2505
#define fp(a,b,c) for(int a=b;a<=c;a++)
#define fd(a,b,c) for(int a=c;a>=b;a--)
using namespace std;
int n,m,K,ans;
int a[N][N],b[N][N],c[N][N],d[N][N],s[N][N];
int main()
{
scanf("%d%d%d",&n,&m,&K);
fp(i,,n)fp(j,,m)
{
int x;scanf("%d",&x);
s[i][j]=s[i-][j]+s[i][j-]-s[i-][j-]+x;
}
fd(i,K,n)fd(j,K,m)s[i][j]-=s[i-K][j]+s[i][j-K]-s[i-K][j-K];//s[i][j]表示以i,j为右下角的的k*k的正方形的价值 fp(i,K,n)fp(j,K,m)a[i][j]=max(s[i][j],max(a[i-][j],a[i][j-]));//a[i][j]表示以i,j为右下角的最大值
fp(i,K,n)fd(j,K,m)b[i][j]=max(s[i][j],max(b[i-][j],b[i][j+]));//b[i][j]表示以i,j为左下角的最大值
fd(i,K,n)fp(j,K,m)c[i][j]=max(s[i][j],max(c[i+][j],c[i][j-]));//c[i][j]表示以i,j为右上角的最大值
fd(i,K,n)fd(j,K,m)d[i][j]=max(s[i][j],max(d[i+][j],d[i][j+]));//d[i][j]表示以i,j为左上角的最大值 fp(i,K,n-K)fp(j,K,m-K)ans=max(ans,a[i][j]+b[i][j+K]+c[i+K][m]);
fp(i,K,n-K)fp(j,K+K,m)ans=max(ans,b[i][j]+d[i+K][j]+a[n][j-K]);
fp(i,K+K,n)fp(j,K,m-K)ans=max(ans,c[i][j]+d[i][j+K]+a[i-K][m]);
fp(i,K,n-K)fp(j,K,m-K)ans=max(ans,a[i][j]+c[i+K][j]+b[n][j+K]); fp(i,K,n)fp(j,K+K,m-K)ans=max(ans,s[i][j]+a[n][j-K]+b[n][j+K]);
fp(i,K+K,n-K)fp(j,K,m)ans=max(ans,s[i][j]+a[i-K][m]+c[i+K][m]); printf("%d\n",ans);
}
05-07 15:55