Queue主要方法的区别:

 抛出异常返回特殊值
插入add(e)插入成功则返回true,没有可用空间则IllegalStateExceptionoffer(e)
移除remove(e)获取并移除,不存在则抛异常poll(e)
检查element()获取元素,但并不移除,队列为空则抛出异常peek()

Queue既可以是FIFO,也可以是按照一定优先级顺序排列,BlockingQueue区别在于对于空队列获取等待,满队列加入等待,适用于生产者消费者模型:

/**
* Created by itworker365 on 6/2/2017.
*/
public class ThreadWNTest {
public static void main (String[] args) throws InterruptedException {
BlockingQueue blockingQueue = new ArrayBlockingQueue(10);
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
try {
int i = 0;
while (i < 100) {
System.out.println("put :" + i++);
blockingQueue.put(i++);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
t1.start();
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
try {
while (true) {
System.out.println("take: " + blockingQueue.take());
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
t2.start();
System.out.println("start");
}
}

ArrayBlockingQueue: 主要方法学习

包含一个object数组存放元素,takeIndex和putIndex分别包含放入和取出元素的位置,count表示当前元素个数,全局锁lock分别创建notFull和notEmpty(await/singnal)完成当元素满时添加等待,元素空时取元素等待。

class BasicBlockingQueue<E> {
final Object[] items;
int takeIndex;
int putIndex;
int count;
final ReentrantLock lock;
private final Condition notEmpty;
private final Condition notFull; public BasicBlockingQueue (int capacity, boolean fair){
this.items = new Object[capacity];
lock = new ReentrantLock(fair);
notEmpty = lock.newCondition();
notFull = lock.newCondition();
}
//添加元素,如果添加元素为null则抛出异常,如果非null则获取全局锁
// 看添加元素后是否满足队列总长度限制,超出返回false,未超出则将元素添加到对应的items[putIndex]位置,并唤醒notEmpty.signal()
private boolean offer(E e) {
if (e == null)
throw new NullPointerException();
final ReentrantLock lock = this.lock;
lock.lock();
try {
if (count == items.length)
return false;
else {
enqueue(e);
return true;
}
} finally {
lock.unlock();
}
}
//带超时设定的这种
public boolean offer(E e, long timeout, TimeUnit unit)
throws InterruptedException {
if (e == null)
throw new NullPointerException();
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length) {
if (nanos <= 0)
return false;
nanos = notFull.awaitNanos(nanos);
}
enqueue(e);
return true;
} finally {
lock.unlock();
}
}
//添加元素时,offer如果满了返回false,而add不能添加时则抛出异常
public boolean add(E e) {
if (offer(e))
return true;
else
throw new IllegalStateException("Queue full");
} private void enqueue(E x) {
final Object[] items = this.items;
items[putIndex] = x;
if (++putIndex == items.length)
putIndex = 0;
count++;
notEmpty.signal();
}
//取出元素,带超时的,获取全局锁,当元素为0,等待超时时间,一直没有就返回null,有的话就取出队列元素
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == 0) {
if (nanos <= 0)
return null;
nanos = notEmpty.awaitNanos(nanos);
}
return dequeue();
} finally {
lock.unlock();
}
} private E dequeue() {
final Object[] items = this.items;
E x = (E) items[takeIndex];
items[takeIndex] = null;
//不断循环使用
if (++takeIndex == items.length)
takeIndex = 0;
count--;
notFull.signal();
return x;
}
}

LinkedBlockingQueue: 主要方法学习

元素存放在单向列表中,记录首尾节点,统计元素数目用atomicInteger,takelock和putlock分离,添加只需要修改last,取出只需要修改head

class BasicLinkedBlockingQueue<E> {
private final int capacity = Integer.MAX_VALUE;
//统计元素数目用AtomicInteger
private final AtomicInteger count = new AtomicInteger(0);
private transient Node<E> head;
private transient Node<E> last;
//分别创建takeLock和putLock
private final ReentrantLock takeLock = new ReentrantLock();
private final Condition notEmpty = takeLock.newCondition(); private final ReentrantLock putLock = new ReentrantLock();
private final Condition notFull = putLock.newCondition(); //加入元素,包含超时,先获取putlock,跟array基本一样,元素数目用count.getAndIncrement()统计,然后释放锁,发放signalNotEmpty通知
public boolean offer(E e, long timeout, TimeUnit unit)
throws InterruptedException { if (e == null) throw new NullPointerException();
long nanos = unit.toNanos(timeout);
int c = -1;
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
while (count.get() == capacity) {
if (nanos <= 0)
return false;
nanos = notFull.awaitNanos(nanos);
}
enqueue(new Node<E>(e));
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
return true;
}
//取得元素,带超时,先拿到takelock,和别的也一样
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
E x = null;
int c = -1;
long nanos = unit.toNanos(timeout);
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
if (nanos <= 0)
return null;
nanos = notEmpty.awaitNanos(nanos);
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
//添加只需要修改last
private void enqueue(Node<E> node) {
last = last.next = node;
}
//取出只需要修改head
private E dequeue() {
Node<E> h = head;
Node<E> first = h.next;
h.next = h; // help GC
head = first;
E x = first.item;
first.item = null;
return x;
}
private void signalNotEmpty() {
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
notEmpty.signal();
} finally {
takeLock.unlock();
}
}
private void signalNotFull() {
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
notFull.signal();
} finally {
putLock.unlock();
}
}
}
class Node<E> {
E item;
Node<E> next;
Node(E x) { item = x; }
}
05-11 16:59