这道题考场上我想到的居然是最小生成树(于是就成功的爆零了),如果加了特判的话就有80分,主要还是数据太水了吧。

下面就来讲讲正解呗,因为之前接触过状压DP,所以做起来还是比较顺。

一个二进制数\(0000\)表示4个水杯都装有水,\(0001\)表示第一个水杯是空的,代价最小的状态,同理,\(1000\)表示第4个水杯是空的,代价最小的状态。

现在来考虑状态转移,拿\(1000\)举例,不难发现它可以转移到。

  • \(1100\)
  • \(1010\)
  • \(1001\)

    (可以这么考虑,我们在\(1000\)这个状态下进行了一个将\(i\)杯子的水倒入了\(j\)的操作。不管\(i\)和\(j\)是多少,总会有一个杯子会空掉,所以会多出一个"1"出来)

因为每次操作只能在两个装有水的杯子\(i\)和\(j\)的杯子进行,所以我们只需要在当前状态\(1000\)里暴力枚举位数为\(0\)的\(i\)和\(j\),模拟将\(i\)倒入\(j\)的操作。因为\(i\)倒入了\(j\),所以第\(i\)位为1,权值为\(w_{ij}\)。

那么我们便可以得出状态转移方程:

\(f_{S+1<<i} = min(f_{S}+w_{ij})\)

S为当前状态,一个二进制数。当空的杯子,也就是S的1的个数为\(n-k\)时,我们便可以记录答案。

代码

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; #define N 30 int n,k,w[N][N],ans,inf,f[1<<21]; int main() {
memset(f,0x3f,sizeof(f));
ans=f[0];
cin>>n>>k;
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++)
cin>>w[i][j];
f[0]=0;
for(int S=0;S<1<<n;S++) {
int sum=0;
for(int i=1;i<=n;i++) if(S & (1<<(i-1))) sum++;
if(sum==n-k) {
ans=min(ans,f[S]);
continue;
}
if(sum>n-k) continue;
for(int i=1;i<=n;i++)
if(!(S&(1<<(i-1))))
for(int j=1;j<=n;j++)
if(!(S & (1<<(j-1))) && i!=j)
f[S+(1<<(i-1))]=min(f[S+(1<<(i-1))],f[S]+w[i][j]);
}
cout<<ans;
}
05-23 03:55