第一节 系统概述
Keil C51是美国Keil Software公司出品的51系列兼容单片机C语言软件开发系统,与汇编相比,C语言在功能上、结构性、可读性、可维护性上有明显的优势,因而易学易用。用过汇编语言后再使用C来开发,体会更加深刻。Keil C51软件提供丰富的库函数和功能强大的集成开发调试工具,全Windows界面。另外重要的一点,只要看一下编译后生成的汇编代码,就能体会到Keil C51生成的目标代码效率非常之高,多数语句生成的汇编代码很紧凑,容易理解。在开发大型软件时更能体现高级语言的优势。下面详细介绍Keil C51开发系统各部分功能和使用。
第二节 Keil C51单片机软件开发系统的整体结构
C51工具包的整体结构,如图(1)所示,其中uVision与Ishell分别是C51 for Windows和for Dos的集成开发环境(IDE),可以完成编辑、编译、连接、调试、仿真等整个开发流程。开发人员可用IDE本身或其它编辑器编辑C或汇编源文件。然后分别由C51及A51编译器编译生成目标文件(.OBJ)。目标文件可由LIB51创建生成库文件,也可以与库文件一起经L51连接定位生成绝对目标文件(.ABS)。ABS文件由OH51转换成标准的Hex文件,以供调试器dScope51或tScope51使用进行源代码级调试,也可由仿真器使用直接对目标板进行调试,也可以直接写入程序存贮器如EPROM中。
第三节 Keil C51工具包的安装
1. C51 for Dos
在Windows下直接运行软件包中DOS/C51DOS.exe然后选择安装目录即可。完毕后欲使系统正常工作须进行以下操作(设C:/C51为安装目录):修改Autoexec.bat,加入path=C:/C51/BinSet C51LIB=C:/C51/LIBSet C51INC=C:/C51/INC然后运行Autoexec.bat
2. C51 for Windows的安装及注意事项:
在Windows下运行软件包中WIN/Setup.exe,最好选择安装目录与C51 for Dos相同,这样设置最简单(设安装于C:/C51目录下)。然后将软件包中crack目录中的文件拷入C:/C51/Bin目录下。
第四节 Keil C51工具包各部分功能及使用简介
1. C51与A51
(1) C51
C51是C语言编译器,其使用方法为:C51 sourcefile[编译控制指令]或者C51 @ commandfile其中sourcefile为C源文件(.C)。大量的编译控制指令完成C51编译器的全部功能。包控C51输出文件C.LST,.OBJ,.I和.SRC文件的控制。源文件(.C)的控制等,详见第五部分的具体介绍。而Commandfile为一个连接控制文件其内容包括:.C源文件及各编译控制指令,它没有固定的名字,开发人员可根据自己的习惯指定,它适于用控制指令较多的场合。
(2) A51
A51是汇编语言编译器,使用方法为:A51 sourcefile[编译控制指令]或A51 @ commandfile其中sourcefile为汇编源文件(.asm或.a51),而编译控制指令的使用与其它汇编如ASM语言类似,可参考其他汇编语言材料。Commandfile同C51中的Commandfile类似,它使A51使用和修改方便。
2. L51和BL51
(1) L51
L51是Keil C51软件包提供的连接/定位器,其功能是将编译生成的OBJ文件与库文件连接定位生成绝对目标文件(.ABS),其使用方法为: L51 目标文件列表[库文件列表] [to outputfile] [连接控制指令]或 L51 @Commandfile源程序的多个模块分别经C51与A51编译后生成多个OBJ文件,连接时,这些文件全列于目标文件列表中,作为输入文件,如果还需与库文件(.LiB)相连接,则库文件也必须列在其后。outputfile为输文件名,缺少时为第一模块名,后缀为.ABS。连接控制指令提供了连接定位时的所有控制功能。Commandfile为连接控制文件,其具体内容是包括了目标文件列表,库文件列表及输出文件、连接控制命令,以取代第一种繁琐的格式,由于目标模块库文件大多不止1个,因而第2种方法较多见,这个文件名字也可由使用者随意指定。
(2) Bl51
BL51也是C51软件包的连接/定位器,其具有L51的所有功能,此外它还具有以下3点特别之处: a. 可以连接定位大于64kBytes的程序。 b. 具有代码域及域切换功能(CodeBanking & Bank Switching) c. 可用于RTX51操作系统RTX51是一个实时多任务操作系统,它改变了传统的编程模式,甚至不必用main( )函数,单片机系统软件向RTOS发展是一种趋势,这种趋势对于186和386及68K系列CPU更为明显和必须,对8051因CPU较为简单,程序结构等都不太复杂,RTX51作用显得不太突出,其专业版软件PK51软件包甚至不包括RTX51Full,而只有一个RTX51TINY版本的RTOS。RTX51 TINY适用于无外部RAM的单片机系统,因而可用面很窄,在本文中不作介绍。Bank switching技术因使用很少也不作介绍。
3. DScope51,Tscope51及Monitor51
(1) dScope51
dScope51是一个源级调试器和模拟器,它可以调试由C51编译器、A51汇编器、PL/M-51编译器及ASM-51汇编器产生的程序。它不需目标板(for windows也可通过mon51接目标板),只能进行软件模拟,但其功能强大,可模拟CPU及其外围器件,如内部串口,外部I/O及定时器等,能对嵌入式软件功能进行有效测试。其使用方法为: DS51[debugfile][INIT(initfile)]其中debugfile是一个Hex格式的8051文件,即待调试的文件其为可选的,可在进入dScope51后用load命令装入。Initfile为一个初使化文件,它在启动dScope51后,在debugfile装入前装入,装有一些dScope的初使化参数及常用调试函数等。下面是一个dScope.ini文件(for dos)的内容: Load ../../ds51/8051.iof Map 0,0xffffdScope51 for Windows则直接用鼠标进入,然后用load装入待调文件。
(2) tScope51
与dScope51不同的是Scope51必须带目标板,目前它可以通过两种方式访问目标板。(1) 通过EMul51在线仿真器,tScope51为该仿真器准备了一个动态连接文件EMUL51.IOT,但该方法必须配合该仿真器。(2) 通过Monitov51监控程序,这种方法是可行的,tScope51为访问Monitor51专门带有MON51.IOT连接程序,使用时可通过串口及监控程序来调试目标板。其使用方法为: TS51[INIT(file_name.ini)]其中file_name.ini为一个初使化文件。进入TS51后,必须装入IOT文件,可用的有MON51.IOT及EMUL51.IOT两种,如装入MON51.IOT:Load.C:/C51/TS51/MON51.IOT CPUTYPE(80517)可惜的是tScope51只有for Dos的版本。
(3) Monitor 51
Monitor51是一个监控程序通过PC机的串口与目标板进行通信,Monitor操作需要MON51或dScope51 for Windows,后面部分将对Monitor51做较为详细的介绍。
4. Ishell及uVision
(1) Ishell for Dos
这是一个for Dos的IDE,直接在命令行键入Ishell,则进入该环境,它使用简单方便。其命令行与DOS命令行具有同样的功能,对单模块的Project直接由菜单进行编译连接,对多模块的project。则通过批处理,BAT文件进行编译连接,然后通过菜单控制由dScope51或tScope51对程序进行调试,因为是for dos的,不做太详细介绍。
(2) uVision for Windows
uVision for Windows是一个标准的Windows应用程序,它是C51的一个集成软件开发平台,具有源代码编辑、project管理、集成的make等功能,它的人机界面友好,操作方便,是开发者的首选,具体配置及使用见第五部分。
第二章 Keil C51软件使用详解
第一节 Keil C51编译器的控制指令
C51编译器的控制指令分为三类:源文件控制类,目标文件控制类及列表控制类。
1. 源文件控制类
NOEXTEND:C51源文件不允许使用ANSI C扩展功能。DEFINE(DF):定义预处理(在C51命令行)。
2. 目标文件(Object)控制类:
COMPACT LARGE SMALL 选编译模式 DEBUG(DB) 包含调试信息,以供仿真器或dSCope51使用。 NOAMAKE(NOAM) 禁止AutoMake信息记录 NOREGPARMS 禁止用寄存器传递参数 OBJECTEXTEND(OE) Object文件包含附加变量类型信息 OPTIMIZE(OT) 指定优化级别 REGFILE(RF) 指定一个寄存器使用的文件以供整体优化用 REGISTERBANK(RB) 指定一个供绝对寄存器访问的寄存器区名 SRC 不生成目标文件只生成汇编源文件 其它控件不常用。
3. 列表文件(listing)控制类:
CODE(CD):向列表文件加入汇编列表 LISTINCLUDE(LC):显示indude文件 SYMBOLS(SB):列表文件包括模块内所有符号的列表 WARNINGLEVEL(WL):选择“警告”级别
第二节 dScope51的使用
1. dScope51 for Dos
总的来说dScope51具有以下特性:l 高级语言显示模式l 集成硬件环境模拟l 单步或“GO”执行模式l 存储器、寄存器及变量访问l Watch表达式之值l 函数与信号功能下面,具体说明在进入dScope51 for Dos之后,如何实现上述功能,dScope51采用下拉菜单格式和窗口显示控制,共有language、serial、exe、register四个窗口,其中exe为命令行窗口,language为程序窗口,serial为串口窗,register为寄存器窗。
(1) 高级语言显示模式
单击主菜单中的“View”,第一栏中的三条命令“Highlevel”、“Mixed”、“Assembly”分别对所装入的程序按照“高级”、“混合级”及“汇编级”三种方式显示,以方便调试使用。
(2) 集成硬件环境模拟显示
主菜单中“Peripheral”各条能显示模拟硬件环境的状态,其中:i/o Port:显示各I/O口之值,对8031而言SFR中的P1、P2、P3、P0与引脚之值分别列出:Interrupt:显示5个中断源的入口模式是否允许,优先级等中断状态。Timer:显示各定时/计数器的模式,初始值状态等。int Message:中断信息允许,如为允许(“>>”出现),则当中断申请时,显示中断源信息。比如当中断发生时会显示: “interrupt Timer 0 occured”等 A/D converter: 显示A/D转换器状态无时,则提示“无”。 Serial:串口信息显示,包括串口模式、波特产等 Other:其它器件,如为8031则显示“ 无”
(3) 单步或“Go”执行
“F8”单步执行,“F5”全速执行到断点。或选主菜单中Trace单步执行CPU中的Go全速执行。
(4) 存储器寄存器及变量访问
外部存储器管理MAP菜单:设置(set)、取消(reset)、显示(Display)处理可用存储空间。修改Code代码:ASM命令存储器显示命令:D 类别为(X、D、I、B、C)修改存储器命令:E 有以下几种命令EB、EC、EI、EL、EF、EP复杂数据类型显示:Object命令;用以显示结构或数组的内容。欲使此命令有效,C51编译器必须有DB及OBJECTEXTEND两条。反汇编命令:U
(5) “Watch”表达式之值
在View菜单的“Watch”一栏中有四项:其中包括定义Watch Point(Define)、删除Watch Point(remove,kill all),及自动更新选项。也可用WS、WK等命令代替,下面具体看“表达式”类型:dScope51一次最多可设16个WtchPoint表达式,显示于Watch Window之中,表达式可以是简单变量,也可是复杂数据类型如结构、数组和指向结构的指针等,例如:>WS *ptime>WS ptime→hour>WS some_record[o],analog等等
(6) 关于.IOF文件
启动DS51后必须装入.IOF文件才能使CPU及Peripheral各项起作用,这个函数的使用是依据8051系列CPU的不同特点,装入8051各CPU硬件设备模拟驱动文件,比如8031CPU就必须load DS51目录下的8051.IOF。
2. dScope for Windows
dScope for windows具有dScope for dos的全部功能,此外,它还具有以下明显的优点: (1) 标准的Windows界面,操作更容易更简单; (2) 常用操作多用对话框,而非Dos的行命令方式; (3) 窗口资源更加丰富:存储器窗口、覆盖率分析、运行状态分析窗口,加强了调试功能;因为dScope for Windows功能强大,具体操作在第八章详细介绍。
第三节 Monitor51及其使用
1. Monitor51对硬件的要求
(1) 硬件系统为51系列CPU; (2) 带5K外部程序存储器(从O地址开始),存放Monitor51程序; (3) 256Bytes的外部数据存储器以及5K的跟踪缓冲区,此外,外部数据存储器必须足够容纳所有应用程序代码及数据,且所有外部数据存储器必须为冯·诺伊曼存储器,即能一致访问XDATA与Code空间。 (4) 一个定时器作为波特率发生器供串口使用; (5) 6 Bytes的空余堆栈。
2. Mon51的使用
Mon51的使用途径有三种方式: (1) Dos行命令方式 即先用install对MON51进行配置,然后用MON51进入Monitor状态,启用各种命令对Monitor51进行调试。 (2) tScope51方式 启动tScope51装入TS51目录下的MON51.IOT驱动文件,与目标板通信。 (3) dScope51 for Windows方式 在选CPU驱动文件时,选“MON51.dll”,则检查目标板并进入MON51状态。
3. MON51的配置
(1) MON51 for Dos的配置 运行install文件(在MON51目录下),不同的参数可以配置不同的硬件环境。INSTALL Serialtype [xdstastart[codestart[bank][PROMCHECK]]],具体说明见MON51帮助文件或使用手册。 (2) MON51 for Windows的配置 在启用MON51.dll时,会使得系统自动检查目标板连接,如配置不对,则弹出“Configuration”对话框,设置PC串口,波特率等,完毕单击“apply”有效。
4. 串口连接图:
收发交叉互连,RTS、CTS直连,DSR、DTR直连,具体引脚排列参考串口资料。
5. MON51命令及使用
详细的MON51命令可参阅帮助。
第四节 集成开发环境(IDE)的使用
1. Ishell for Dos的使用
进入Ishell之后看到两个窗口:一个是文件窗口,一个是Dos命令行窗口,窗口上方是下拉式的命令菜单,其中的Files控制文件窗口的显隐。使用Ishell,第一步就是配置系统,即要学习两个文件的修改与创建:
(1) Ishell.CFG文件
每一个project都有一个Ishell.CFG,其中存放有“Option菜单和Setup菜单下的部分信息;Bell enabled、Monochrome enabled、Editor Selected、CRT Lines、target enviroment、name of user edit、Automatic load for configuration enabled、file window enabled、file specification for file window、translate command line controls、project name等。对每个project都必须设置以上信息,然后存盘“setup”的的“save”,这样才可正式开始下面工作。
(2) IShell.col文件
对IDE颜色设置,如不改动,可以缺省为主。
(3) CDF文件
该文件位于BIN目录下,每一文件定义一组外部函数工具包,即定义外部环境如8051.CDF,USER.CDF等,开发者可修改CDF文件,供自己使用,至于CDF文件内容可查看一下8051.CDF即可知道。注意.CDF文件是Ishell系统的核心所在,不同的CDF文件可使本IDE适用于不同的编译、连接系统,即本IDE并不仅适于C51。下面谈一谈Automake工具:C51的Automake是一个project管理器,在8051工具包中以OBJECT文件形式保留了一个project的信息,AutoMake用这些信息来进行project管理,一旦手工建立一个project,Automake可生成一个新的OBJECT,AutoMake利用此文件来编译那些修改过的文件。Automake支持C51、A51、L51/BL51、C166、A166、L166等编译连接器。点中主菜单中的Automake即运行本工具。Ishell for Dos使用比较繁琐,推荐使用uVision for windows。
2. uVision for windows的使用
uVision是一个标准的windows应用程序,其编译功能、文件处理功能、project处理功能、窗口功能以及工具引用功能(如A51、C51、PL/M41、BL51 dScope等)等都较Ishell for Dos要强得多。uVision采用BL51作连接器,因为BL51兼容L51,所以一切能在Dos下工作的project都可以到uVision中进行连接调试。uVision采用dScope for windows作调试器,该调试器支持MON51及系统模拟两种方式,功能较for DOS要强大好用,调试功能强大。注意:(1) Option菜单下的各项要会使用,其中A51、C51、PL/M51、BL51定义各文件所使用的编译、连接控制指令,dScope定义一个dScope初始化文件。Make则是定义一个make文件。(2) 进入调试是在RUN菜单下运行dScope。(3) project中包括新建、打开、修改、更新、编译、连接等poject处理,具体使用可参考后面的例子。
第一节 Keil C51扩展关键字
C51 V4.0版本有以下扩展关键字(共19个):_at_ idata sfr16 alien interrupt smallbdata large _task_ Code bit pdatausing reentrant xdata compact sbit data sfr
第二节 内存区域(Memory Areas):
1. Pragram Area:
由Code说明可有多达64kBytes的程序存储器
2. Internal Data Memory:
内部数据存储器可用以下关键字说明:data:直接寻址区,为内部RAM的低128字节 00H~7FHidata:间接寻址区,包括整个内部RAM区 00H~FFHbdata:可位寻址区, 20H~2FH
3. External Data Memory
外部RAM视使用情况可由以下关键字标识:xdata:可指定多达64KB的外部直接寻址区,地址范围0000H~0FFFFHpdata:能访问1页(25bBytes)的外部RAM,主要用于紧凑模式(Compact Model)。
4. Speciac Function Register Memory
8051提供128Bytes的SFR寻址区,这区域可位寻址、字节寻址或字寻址,用以控制定时器、计数器、串口、I/O及其它部件,可由以下几种关键字说明:sfr:字节寻址 比如 sfr P0=0x80;为PO口地址为80H,“=”后H~FFH之间的常数。sfr16:字寻址,如sfr16 T2=0xcc;指定Timer2口地址T2L=0xcc T2H=0xCDsbit:位寻址,如sbit EA=0xAF;指定第0xAF位为EA,即中断允许还可以有如下定义方法:sbit 0V=PSW^2;(定义0V为PSW的第2位)sbit 0V=0XDO^2;(同上)或bit 0V-=0xD2(同上)。
第三节 存储模式
存储模式决定了没有明确指定存储类型的变量,函数参数等的缺省存储区域,共三种:
1. Small模式
所有缺省变量参数均装入内部RAM,优点是访问速度快,缺点是空间有限,只适用于小程序。
2. Compact模式
所有缺省变量均位于外部RAM区的一页(256Bytes),具体哪一页可由P2口指定,在STARTUP.A51文件中说明,也可用pdata指定,优点是空间较Small为宽裕速度较Small慢,较large要快,是一种中间状态。
3. large模式
所有缺省变量可放在多达64KB的外部RAM区,优点是空间大,可存变量多,缺点是速度较慢。提示:存储模式在C51编译器选项中选择。
第四节 存储类型声明
变量或参数的存储类型可由存储模式指定缺省类型,也可由关键字直接声明指定。各类型分别用:code,data,idata,xdata,pdata说明,例:data uar1char code array[ ]=“hello!”;unsigned char xdata arr[10][4][4];
第五节 变量或数据类型
C51提供以下几种扩展数据类型:bit 位变量值为0或1sbit 从字节中定义的位变量 0或1sfr sfr字节地址 0~255sfr16 sfr字地址 0~65535其余数据类型如:char,enum,short,int,long,float等与ANSI C相同。
第六节 位变量与声明
1. bit型变量
bit型变量可用变量类型,函数声明、函数返回值等,存贮于内部RAM20H~2FH。注意:(1) 用#pragma disable说明函数和用“usign”指定的函数,不能返回bit值。(2) 一个bit变量不能声明为指针,如bit *ptr;是错误的(3) 不能有bit数组如:bit arr[5];错误。
2. 可位寻址区说明20H-2FH
可作如下定义:int bdata i;char bdata arr[3],然后:sbit bito=in0;sbit bit15=I^15;sbit arr07=arr[0]^7;sbit arr15=arr[i]^7;
第七节 Keil C51指针
C51支持一般指针(Generic Pointer)和存储器指针(Memory_Specific Pointer).
1. 一般指针
一般指针的声明和使用均与标准C相同,不过同时还可以说明指针的存储类型,例如:long * state;为一个指向long型整数的指针,而state本身则依存储模式存放。char * xdata ptr;ptr为一个指向char数据的指针,而ptr本身放于外部RAM区,以上的long,char等指针指向的数据可存放于任何存储器中。一般指针本身用3个字节存放,分别为存储器类型,高位偏移,低位偏移量。
2. 存储器指针
基于存储器的指针说明时即指定了存贮类型,例如:char data * str;str指向data区中char型数据int xdata * pow; pow指向外部RAM的int型整数。这种指针存放时,只需一个字节或2个字节就够了,因为只需存放偏移量。
3. 指针转换
即指针在上两种类型之间转化:l 当基于存储器的指针作为一个实参传递给需要一般指针的函数时,指针自动转化。l 如果不说明外部函数原形,基于存储器的指针自动转化为一般指针,导致错误,因而请用“#include”说明所有函数原形。l 可以强行改变指针类型。
第八节 Keil C51函数
C51函数声明对ANSI C作了扩展,具体包括:
1. 中断函数声明:
中断声明方法如下:void serial_ISR () interrupt 4 [using 1]{/* ISR */}为提高代码的容错能力,在没用到的中断入口处生成iret语句,定义没用到的中断。/* define not used interrupt, so generate \"IRET\" in their entrance */void extern0_ISR() interrupt 0{} /* not used */void timer0_ISR () interrupt 1{} /* not used */void extern1_ISR() interrupt 2{} /* not used */void timer1_ISR () interrupt 3{} /* not used */void serial_ISR () interrupt 4{} /* not used */
2. 通用存储工作区
3. 选通用存储工作区由using x声明,见上例。
4. 指定存储模式
由small compact 及large说明,例如:void fun1(void) small { }提示:small说明的函数内部变量全部使用内部RAM。关键的经常性的耗时的地方可以这样声明,以提高运行速度。
5. #pragma disable
在函数前声明,只对一个函数有效。该函数调用过程中将不可被中断。
6. 递归或可重入函数指定
在主程序和中断中都可调用的函数,容易产生问题。因为51和PC不同,PC使用堆栈传递参数,且静态变量以外的内部变量都在堆栈中;而51一般使用寄存器传递参数,内部变量一般在RAM中,函数重入时会破坏上次调用的数据。可以用以下两种方法解决函数重入:a、在相应的函数前使用前述“#pragma disable”声明,即只允许主程序或中断之一调用该函数;b、将该函数说明为可重入的。如下:void func(param...) reentrant;KeilC51编译后将生成一个可重入变量堆栈,然后就可以模拟通过堆栈传递变量的方法。由于一般可重入函数由主程序和中断调用,所以通常中断使用与主程序不同的R寄存器组。另外,对可重入函数,在相应的函数前面加上开关“#pragma noaregs”,以禁止编译器使用绝对寄存器寻址,可生成不依赖于寄存器组的代码。
7. 指定PL/M-51函数
由alien指定。
第四章 Keil C51高级编程
本章讨论以下内容:l 绝对地址访问l C与汇编的接口l C51软件包中的通用文件l 段名转换与程序优化
第一节 绝对地址访问
C51提供了三种访问绝对地址的方法:
1. 绝对宏:
在程序中,用“#include”即可使用其中定义的宏来访问绝对地址,包括:CBYTE、XBYTE、PWORD、DBYTE、CWORD、XWORD、PBYTE、DWORD具体使用可看一看absacc.h便知例如:rval=CBYTE[0x0002];指向程序存贮器的0002h地址rval=XWORD [0x0002];指向外RAM的0004h地址
2. _at_关键字
直接在数据定义后加上_at_ const即可,但是注意:(1)绝对变量不能被初使化;(2)bit型函数及变量不能用_at_指定。例如:idata struct link list _at_ 0x40;指定list结构从40h开始。xdata char text[25b] _at_0xE000;指定text数组从0E000H开始提示:如果外部绝对变量是I/O端口等可自行变化数据,需要使用volatile关键字进行描述,请参考absacc.h。
3. 连接定位控制
此法是利用连接控制指令code xdata pdata /data bdata对“段”地址进行,如要指定某具体变量地址,则很有局限性,不作详细讨论。
第二节 Keil C51与汇编的接口
1. 模块内接口
方法是用#pragma语句具体结构是:#pragma asm汇编行#pragma endasm这种方法实质是通过asm与ndasm告诉C51编译器中间行不用编译为汇编行,因而在编译控制指令中有SRC以控制将这些不用编译的行存入其中。
2. 模块间接口
C模块与汇编模块的接口较简单,分别用C51与A51对源文件进行编译,然后用L51将obj文件连接即可,关键问题在于C函数与汇编函数之间的参数传递问题,C51中有两种参数传递方法。(1) 通过寄存器传递函数参数最多只能有3个参数通过寄存器传递,规律如下表:
参数数目 | char | int | long,float | 一般指针 |
123 | R7R5R3 | R6 & R7R4 & R5R2 & R3 | R4~R7R4~R7 | R1~R3R1~R3R1~R3 |
(2) 通过固定存储区传递(fixed memory)这种方法将bit型参数传给一个存储段中: ?function_name?BIT将其它类型参数均传给下面的段:?function_name?BYTE,且按照预选顺序存放。至于这个固定存储区本身在何处,则由存储模式默认。(3) 函数的返回值函数返回值一律放于寄存器中,有如下规律:
return type | Registev | 说明 |
bit | 标志位 | 由具体标志位返回 |
char/unsigned char 1_byte指针 | R7 | 单字节由R7返回 |
int/unsigned int 2_byte指针 | R6 & R7 | 双字节由R6和R7返回,MSB在R6 |
long&unsigned long | R4~R7 | MSB在R4, LSB在R7 |
float | R4~R7 | 32Bit IEEE格式 |
一般指针 | R1~R3 | 存储类型在R3 高位R2 低R1 |
(4) SRC控制该控制指令将C文件编译生成汇编文件(.SRC),该汇编文件可改名后,生成汇编.ASM文件,再用A51进行编译。
第三节 Keil C51软件包中的通用文件
在C51/LiB目录下有几个C源文件,这几个C源文件有非常重要的作用,对它们稍事修改,就可以用在自己的专用系统中。
1. 动态内存分配
init_mem.C:此文件是初始化动态内存区的程序源代码。它可以指定动态内存的位置及大小,只有使用了init_mem( )才可以调回其它函数,诸如malloc calloc,realloc等。calloc.c:此文件是给数组分配内存的源代码,它可以指定单位数据类型及该单元数目。malloc.c:此文件是malloc的源代码,分配一段固定大小的内存。realloc.c:此文件是realloc.c源代码,其功能是调整当前分配动态内存的大小。
2. C51启动文件STARTUP.A51
启动文件STARTUP.A51中包含目标板启动代码,可在每个project中加入这个文件,只要复位,则该文件立即执行,其功能包括:l 定义内部RAM大小、外部RAM大小、可重入堆栈位置l 清除内部、外部或者以此页为单元的外部存储器l 按存储模式初使化重入堆栈及堆栈指针l 初始化8051硬件堆栈指针l 向main( )函数交权开发人员可修改以下数据从而对系统初始化 常数名 意义IDATALEN 待清内部RAM长度XDATA START 指定待清外部RAM起始地址XDATALEN 待清外部RAM长度IBPSTACK 是否小模式重入堆栈指针需初始化标志,1为需要。缺省为0IBPSTACKTOP 指定小模式重入堆栈顶部地址XBPSTACK 是否大模式重入堆栈指针需初始化标志,缺省为0XBPSTACKTOP 指定大模式重入堆栈顶部地址PBPSTACK 是否Compact重入堆栈指针,需初始化标志,缺省为0PBPSTACKTOP 指定Compact模式重入堆栈顶部地址PPAGEENABLE P2初始化允许开关PPAGE 指定P2值PDATASTART 待清外部RAM页首址PDATALEN 待清外部RAM页长度提示:如果要初始化P2作为紧凑模式高端地址,必须:PPAGEENAGLE=1,PPAGE为P2值,例如指定某页1000H-10FFH,则PPAGE=10H,而且连接时必须如下:L51 PDATA(1080H),其中1080H是1000H-10FFH中的任一个值。以下是STARTUP.A51代码片断,红色是经常可能需要修改的地方:;------------------------------------------------------------------------------; This file is part of the C51 Compiler package; Copyright KEIL ELEKTRONIK GmbH 1990;------------------------------------------------------------------------------; STARTUP.A51: This code is executed after processor reset.;; To translate this file use A51 with the following invocation:;; A51 STARTUP.A51;; To link the modified STARTUP.OBJ file to your application use the following; L51 invocation:;; L51 , STARTUP.OBJ ;;------------------------------------------------------------------------------;; User-defined Power-On Initialization of Memory;; With the following EQU statements the initialization of memory; at processor reset can be defined:;; ; the absolute start-address of IDATA memory is always 0IDATALEN EQU 80H ; the length of IDATA memory in bytes.;XDATASTART EQU 0H ; the absolute start-address of XDATA memoryXDATALEN EQU 0H ; the length of XDATA memory in bytes.;PDATASTART EQU 0H ; the absolute start-address of PDATA memoryPDATALEN EQU 0H ; the length of PDATA memory in bytes.;; Notes: The IDATA space overlaps physically the DATA and BIT areas of the; 8051 CPU. At minimum the memory space occupied from the C51 ; run-time routines must be set to zero.;------------------------------------------------------------------------------;; Reentrant Stack Initilization;; The following EQU statements define the stack pointer for reentrant; functions and initialized it:;; Stack Space for reentrant functions in the SMALL model.IBPSTACK EQU 0 ; set to 1 if small reentrant is used.IBPSTACKTOP EQU 0FFH+1 ; set top of stack to highest location+1.;; Stack Space for reentrant functions in the LARGE model. XBPSTACK EQU 0 ; set to 1 if large reentrant is used.XBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.;; Stack Space for reentrant functions in the COMPACT model. PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.PBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.;;------------------------------------------------------------------------------;; Page Definition for Using the Compact Model with 64 KByte xdata RAM;; The following EQU statements define the xdata page used for pdata; variables. The EQU PPAGE must conform with the PPAGE control used; in the linker invocation.;PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.PPAGE EQU 0 ; define PPAGE number.;;------------------------------------------------------------------------------
3. 标准输入输出文件
putchar.cputchar.c是一个低级字符输出子程,开发人员可修改后应用到自己的硬件系统上,例如向CLD或LEN输出字符。缺省:putchar.c是向串口输出一个字符XON|XOFF是流控标志,换行符“/*n”自动转化为回车/换行“/r/n”。getkey.cgetkey函数是一个低级字符输入子程,该程序可用到自己硬件系统,如矩阵键盘输入中,缺省时通过串口输入字符。
4. 其它文件
还包括对Watch-Dog有独特功能的INIT.A51函数以及对8×C751适用的函数,可参考源代码。
第四节 段名协定与程序优化
1. 段名协定(Segment Naming Conventions)
C51编译器生成的目标文件存放于许多段中,这些段是代码空间或数据空间的一些单元,一个段可以是可重定位的,也可以是绝对段,每一个可重定位的段都有一个类型和名字,C51段名有以下规定:每个段名包括前缀与模块名两部分,前缀表示存储类型,模块名则是被编译的模块的名字,例如:?CO?main1 :表示main1模块中的代码段中的常数部分?PR?function1?module 表module模块中函数function1的可执行段,具体规定参阅手册。
2. 程序优化
C51编译器是一个具有优化功能的编译器,它共提供六级优化功能。确保生成目标代码的最高效率(代码最少,运行速度最快)。具体六级优化的内容可参考帮助。在C51中提供以下编译控制指令控制代码优化:OPTIMIZE(SJXE):尽量采用子程序,使程序代码减少。NOAREGS:不使用绝对寄存器访问,程序代码与寄存器段独立。NOREGPARMS:参数传递总是在局部数据段实现,程序代码与低版本C51兼容。OPTIMIZE(SIZE)AK OPTIMIZE(speed)提供6级优化功能,缺省为: OPTIMIZE(6,SPEED)。
第一节 本征库函数(intrinsic routines)和非本征证库函数
C51提供的本征函数是指编译时直接将固定的代码插入当前行,而不是用ACALL和LCALL语句来实现,这样就大大提供了函数访问的效率,而非本征函数则必须由ACALL及LCALL调用。C51的本征库函数只有9个,数目虽少,但都非常有用,列如下:_crol_,_cror_:将char型变量循环向左(右)移动指定位数后返回_iror_,_irol_:将int型变量循环向左(右)移动指定位数后返回_lrol_,_lror_:将long型变量循环向左(右)移动指定位数后返回_nop_: 相当于插入NOP_testbit_: 相当于JBC bitvar测试该位变量并跳转同时清除。_chkfloat_: 测试并返回源点数状态。使用时,必须包含#inclucle 一行。如不说明,下面谈到的库函数均指非本征库函数。
第二节 几类重要库函数
1. 专用寄存器include文件
例如8031、8051均为REG51.h其中包括了所有8051的SFR及其位定义,一般系统都必须包括本文件。
2. 绝对地址include文件absacc.h
该文件中实际只定义了几个宏,以确定各存储空间的绝对地址。
3. 动态内存分配函数,位于stdlib.h中
4. 缓冲区处理函数位于“string.h”中
其中包括拷贝比较移动等函数如:memccpy memchr memcmp memcpy memmove memset这样很方便地对缓冲区进行处理。
5. 输入输出流函数,位于“stdio.h”中
流函数通8051的串口或用户定义的I/O口读写数据,缺省为8051串口,如要修改,比如改为LCD显示,可修改lib目录中的getkey.c及putchar.c源文件,然后在库中替换它们即可。
第三节 Keil C51库函数原型列表
1. CTYPE.H
bit isalnum(char c); bit isalpha(char c); bit iscntrl(char c); bit isdigit(char c); bit isgraph(char c); bit islower(char c); bit isprint(char c); bit ispunct(char c); bit isspace(char c); bit isupper(char c); bit isxdigit(char c); bit toascii(char c); bit toint(char c); char tolower(char c); char __tolower(char c); char toupper(char c); char __toupper(char c);
2. INTRINS.H
unsigned char _crol_(unsigned char c,unsigned char b); unsigned char _cror_(unsigned char c,unsigned char b); unsigned char _chkfloat_(float ual); unsigned int _irol_(unsigned int i,unsigned char b); unsigned int _iror_(unsigned int i,unsigned char b); unsigned long _irol_(unsigned long l,unsigned char b); unsigned long _iror_(unsigned long L,unsigned char b); void _nop_(void); bit _testbit_(bit b);
3. STDIO.H
char getchar(void); char _getkey(void); char *gets(char * string,int len); int printf(const char * fmtstr[,argument]…); char putchar(char c); int puts (const char * string); int scanf(const char * fmtstr.[,argument]…); int sprintf(char * buffer,const char *fmtstr[;argument]); int sscanf(char *buffer,const char * fmtstr[,argument]); char ungetchar(char c); void vprintf (const char *fmtstr,char * argptr); void vsprintf(char *buffer,const char * fmtstr,char * argptr);
4. STDLIB.H
float atof(void * string); int atoi(void * string); long atol(void * string); void * calloc(unsigned int num,unsigned int len); void free(void xdata *p); void init_mempool(void *data *p,unsigned int size); void *malloc (unsigned int size); int rand(void); void *realloc (void xdata *p,unsigned int size); void srand (int seed);
5. STRING.H
void *memccpy (void *dest,void *src,char c,int len); void *memchr (void *buf,char c,int len); char memcmp(void *buf1,void *buf2,int len); void *memcopy (void *dest,void *SRC,int len); void *memmove (void *dest,void *src,int len); void *memset (void *buf,char c,int len); char *strcat (char *dest,char *src); char *strchr (const char *string,char c); char strcmp (char *string1,char *string2); char *strcpy (char *dest,char *src); int strcspn(char *src,char * set); int strlen (char *src); char *strncat (char 8dest,char *src,int len); char strncmp(char *string1,char *string2,int len); char strncpy (char *dest,char *src,int len); char *strpbrk (char *string,char *set); int strpos (const char *string,char c); char *strrchr (const char *string,char c); char *strrpbrk (char *string,char *set); int strrpos (const char *string,char c); int strspn(char *string,char *set);
第六章 Keil C51例子:Hello.c
Hello位于/C51/excmples/Hello/目录,其功能是向串口输出“Hello,world”整个程序如下:#pragma DB OE CD#indule #includevoid main(void) { SCOn=0x50; TMOD=0x20 TH1=0xf3; Tri=1; TI=1; printf(“Hello,world /n”); while(1) { } }
第一节 uVision for Windows的使用步骤
(1) file_new新建一个hello.c文件,输入如上内容或直接用目录下源文件。(2) file_save或工具栏将文件存盘。(3) project_new project创建一个project名为hello,并在其中加入hello.c。这时该project已是打开状态,或用open project打开已存在的project。(4) option_C51 compiler中选出至少包括两项DB OE。(5) option_dscope Debugger选中hello/DS51.INI查看DS51.INI看其是否为: “load…/…/BIN/8051.DLL map 0, 0xffff”否则修改。(6) 在option_make选make文件顺序。(7) project选Build project,看是否有语法错误,若无则生成HEX文件,若有则修改源文件后重复以上部分步骤。(8) run_dScope debugger进入dScope51后装入hello则可用go直接运行看serial窗口有无输出,正常每系统运行一次,serial窗口均出现一个“Hello,world”表明运行无误。
第二节 Ishell for Dos使用步骤
(1) 进入Ishell 用Setup editer选择编辑器。然后单击Edit或用Edit命令编辑hello.c源文件,存盘,也可以在files窗口中直接选中hello.c。(2) 用cd改换project目录至hello目录。(3) 在setup_target一项目选8051。(4) 在setup_C51中输出DB OE。(5) 在setup_project输入project名hello。(6) 在setup_save保存Ishell.CFG文件。(7) 编辑一个Link文件hello.lin中有“hell.obj”一行。(8) 由光标落在files菜单中的Hello.c上,单击“translate”,如无语法错,再击“link”,则Hex文件生成。(9) 单击Simulate如在8051.CDF中选Simulate为dScope则进入dScope调试直接“Go”,看serial窗口输出为“Hello.world”。(10) 如程序有误修改源代码后不必再translate或link了,只要一步Amake即可。若project中包括不止一个文件,在DOS的Ishell中不能用Translate编译,而应建立bat文件,直接在命令窗编译,然后link连接。如还需用Translate则只能多个文件分别编译,然后连接。
第七章 Keil C51的代码效率
C51程序编译生成汇编代码的效率,是由许多因素共同决定的,对于Keil C51,主要受以下两种因素影响:
第一节 存储模式的影响
存储模式决定了缺省变量的存储空间,而访问各空间变量的汇编代码的繁简程度决定了代码率的高低。例如:一个整形变量i,如放于内存18H、19H空间,则++i的操作编译成四条语句:INC 0x19MOV A,0x19JNZ 0x272DINC 0x180x272D:而如果放于外存空间0000H、0001H则++i的操作编译成九条语句:MOV DPTR,0001MOVX A,@ DPTRINC AMOVX @ DPTR,AJNz #5MOV OPTR,#0000MOVX A,@DPTRINC AMOVX @ DPTR,A就汇编之后的语句而言,对外部存储器的操作较内部存储器操作代码率要低得多,生成的语句为内存的两倍以上,而程序中有大量的这种操作,可见存储模式对代码率的响了。因此程序设计的原则是1、存储模式从small-Compact-large依次选择,实在是变量太多,才选large模式。2、即使选择了large模式,对一些常用的局部的或者可放于内存中的变量,最好放于内存中,以尽量提高程序的代码率。
第二节 程序结构的影响
程序的结构单元包括模块、函数等等。同样的功能,如果结构越复杂,其所涉及的操作、变量、功能模块函数等就越多,较之结构性好,代码简单的程序其代码率自然就低得多。此外程序的运行控制语句,也是影响代码率的关键因素,例如:switch -case语句,许多编译器都把它们译得非常复杂,Keil C51也不例外,相对较为简易的Switch-case语句,编译成跳转指令形式,代码率较高,但对较为复杂的Switch-Case,则要调用一个系统库函数?C?ICASE进行处理,非常复杂。再如if( ),while( ),等语句也是代码相对较低的语句,但编译以后比switch-case要高得多。因此建议设计者尽量少用switch-case之类语句来控制程序结构,以提高代码率。除以上两点外,其它因素也会对代码率产生影响,例如:是否用寄存器传递参数 即NOAREGS选项是否有是否包括调试信息:即DEBUG选项是否包括扩展的调试信息:即BJECTEXTEND
第八章 dScope for Windows使用详解
第一节 概述
1. 主窗口(Mainframe Window)
可设置其它各种调试窗口,设置断点、观察点,修改地址空间,加载文件等等;
2. 调试窗口(DEBUG Window)
支持用户程序的各种显示方式,可连续运行,单步运行用户程序,并可在线 汇编;
3. 命令窗口(Command Window)
支持命令行的输入;
4. 观察窗口(Watch Window)
可设置所要观察的变量、表达式等;
5. 寄存器窗口(Registe Window)
显示内部寄存器的内容,程序运行次数等;
6. 串口窗口(Serical Windows)
显示串口接收和发送的数据;
7. 性能分析窗口
显示所要观察的各程序段占用CPU的空间;
8. 内存窗口(Memory Window)
显示所选择的内存中的数据;
9. 符号浏览窗口(Symbol Browser Window)
显示各种符号名称,包括专有符号,用户自定义符号(函数名、变量、标号)等;
10. 调用线窗口(Call-Stack Window)
动态显示当前执行的程序段的函数调用关系;
11. 代码覆盖窗口
提供当前模块内各程序段中被执行代码的比率;。
12. 外围设备窗口(peripherals)
可显示I/O口,定时器,中断,串口等外围设备状态;
第二节 dScope for Windows基本操作
1. 指定初始化文件
在uVision的Option菜单dScope Debugger中指定dScope的初始化文件,用uVision的RUN启动dScope将自动加载此初始化文件,自动执行其中命令;下面是一个例子,可以看出调入一个调试代码的过程。Ds51.ini:load 8051.dllload testslog>>test.logxtal=11.0592define button \"go to main\",\"g,main\"ws RevCounterws rm.rg,mainPA RESETPA serialPA timer0
2. 观察变量
方法1:命令行WS expression [, numberbase ] [ LINE ]其中numberbase为显示数制,10对应10进制,16对应16进制,缺省为16进制。LINE为单行显示,缺省为多行显示。方法2:setup->Watchpoints,在对话框中输入变量
3. 显示RAM的值
d i(x,d):起始地址,终止地址d 变量名
4. 观察堆栈
View->Call-stack->Show invocation,可以跟踪调用过程;
5. 中断处理程序调试
在装入8051.dll后,在dScope的主菜单中将增加Peripherial,其有4个字菜单:I/0 port:Pi端口状态Interrupt:中断设置Timer:定时器中断状态Serial:串口中断状态设置相应的中断请求标志位即可产生中断。
6. 性能分析(Performance Analyzer:PA)
PA用来分析一段代码执行占用CPU的百分比。定义:命令行 PA func_name
第三节 dScope for Windows命令文件的编制
dScope除了用命令行的方式进行调试以外,还可将各种调试命令汇集于一个调试文件中,然后调用该文件,就可达到自动测试用户源代码的目的。dScope的命令文件支持C/PL/M的格式,因而编制调试命令文件与编制C语言程序有些类似。
1. 地址空间及地址空间类型
(1) 地址空间分段
dScope提供的最大可用空间为16M,实际上我们只用以下三段:① 内部数据空间段(0X00段或D段)0X00:0X0000~0X00:0XFFFF(对MSC51而言为0X00:0X00FF)② 外部数据空间段(0X01段式或X段)0X01:0X0000~0X01~0XFFFF③ 程序空间段(0XFF段或C段)0XFF:0X0000~0XFF:0XFFFF
(2) 地址空间类型
C:代码空间D:内部直接寻址空间I: 内部间接寻址空间X:外部数据空间B:位寻址空间P:I/O口EB:扩展的位寻址空间(MCS251专有)ED:扩展的数据空间(MCS251专有)CO:常数空间(MCS251专有)HC:正常数空间(MCS251专有)
2. 常量
dScope支持十六进制、八进制、十进制、二进制常数,其后缀分别为H、Q(O)、T(或无)、Y;dScope不区分常量的大、小写。
(1) 整型常量
分为整型(int),无符号整型(uint,00rd),长整型(long),无符号长整型(Wlong、Word)。
(2) 浮点型常量
与ANSI C相同。
(3) 字符串常量
与ANSI C相同
(4) 字符常量
分为字符型(Char)和无符号字符型(Uchar)一种。
(5) 行号常数
指用户程序中的行号,实际上是个地址
(6) 位常量(Bit):
0和1
(7) 地址常数
地址常数的种类很多,地址常数不同于行号常数,行号常数就是一个地址,而地址数被引用时,实际上是取该地址中的数据。C:代码地址常数,如C:0X0012或0XFF:0X0012D:内部直接寻址地址常数,如D:0X0068或0X00:0X0068I:内部间按寻址地址常数,如I:0X0010或0X00:0X0010X:外部数据空间地址常数,如X:0X0028或0X01:0X0028B:位地址常数,如B:0X20或B:0X24.0EB:扩展的位地址常数(MCS251专有), ED:扩展的数据空间地址常数(MCS251专有)CO:常数空间地址常数(MCS251专有)HC:正常数空间地址常数(MCS251专有)
(8) 标识符常量
即用户源程序中的标号、函数名等,实际上代表某一地址。
(9) 用户源程序中定义的常数
3. 变量
dScope所支持的变量名或标识符最多可由31个字符组成,第一个字母为A~Z,a~z,下划线或问号,后续字符可为字母、数字、下划线和问号。除CPU变量和系统变量外,dScope不支持全局变量,但可视“define”命令定义的变量为全局变量。Dscope所, 支持的变量分为以下几种(变量名称不区分大、小写),支持类型转换:
(1) 整型变量
分为整型变量(int)、无符号整型变量(uint/word),长整型(Long) 、无符号长整型(Ulong/dword)。
(2) 浮点型变量(float)
与ANSI C相同。
(3) 字符型变量L
分为字符型(char)变量和无符号字符型(Uchar)
(4) 位变量(Bit)
(5) 系统变量
dScope自己定义了一系列内部变量,用户可对这些变量进行读或读/写操作, 可被用户自定义数所引用。a. Cycles (Read Only)32位变量(Ulong),指示当前程序执行已花费的指令周期(cycle)。b. Ramsize(R/W)16位变量(Uint),指示内部可直接寻址的数据空间大小。c. Radix(R/N)8位变量(Uchar),决定输出的数制Radix=0X0A (10进制),Radix=0X10 (16进制)d. -IIP-(R/W)8位变量(Uchar),指示当前的中断嵌套数目。e. $ (R/W)32位变量(Ulong),指出PC值,通过对其进行写操作,可改变程序执行的流程。f. Itrace (R/W)8位变量(Uchar),决定是否对程序运行情况进行记录 Itrace=1,使能记录操作 Itrace=0,根本上记录操作g. __Break__(R/W)8位变量(Uchar) __Break__=1,中止程序的运行h. __Mode__和__Frame size__是MCS 251专有的变量。
(6) CPU变量
即R0~R7、A、C(位变量)、B、DPTR及特殊功能寄存器变量,对这些变量均可进行读、写操作。
(7) 用户源程序中定义的变量、数组、结构等
4. 运算符
dScope支持ANSI C的运算符,包括算术运算符,逻辑运算符,关系运算符。
5. 表达式
以运算符将dScope所支持的常量、变量、函数等连接在一起,就构成了dScope的表达式。
6. 数组
dScope不支持在命令文件中定义数组,但可引用用户程序中的数组,引用方式如同C。
7. 结构和联合
dScope不支持在命令文件中定义结构和联合,但可引用用户程序中的结构和联合,引用方式如同C,但如要输出整个结构或联合的结果,就要用命令“OBJ”。
8. 指针:
不可自定义指针,但支持用户源程序中的指针变量。
9. dScope命令语句
dScope提供了一系列调试命令。在命令文件中,dScope只支持这些语句及前述定义的表达式,C语言的语句均不被支持,但在命令文件所包含的用户自定义函数(非用户源程序中的函数)中支持C语句,但用户自定义函数中同样不支持数组、结构、联合和指针。
(1) ASM
在线汇编命令,格式如下:ASM C:0Xnnnn (或标号);设定插入汇编指令的地址ASM 汇编指令ASM 汇编指令插入完毕后,在debug窗口内选择“Assemble->Assemble”完成编译。
(2) Assign
串行口分配指令,格式如下:Assign channeloutreg对MCS51为:Assign Win Soot但目前的dScope版本并未提供完整串口窗口功能。
(3) Define
用户自定义变量指令,格式如下:Define <类型> <变量名>类型一为如前所述的变量类型,Define指令定义的变量可能为全局变量,可为用户自定义函数所引用。
(4) Display
内存显示命令,格式如下二:D 起始地址,结束地址地址如前所述的地址常数,标识符常量。
(5) Enter
内存修改指令,格式如下:E 类型地址=表达式 [表达式2],[……]类型如前所述,地址如前所述的地址常数。表达式如前所述,但如果是函数名称(含标号、指针变量),则关键字E→EP
(6) Map/Reset map
Map为内存段修改指令,Reset map将内存段复位或缺省值。
(7) Object
用以引用用户源程序中的结构(联合)、数组、格式如下:Obj表达式 [n,],[Line]表达式为用户源程序中的数组,结构(联合)名称。当Line缺省时,数目、结构(联合)的内容按n行输出;如有Line,则单行输出。
(8) U
反汇编命令,格式如下: U [地址]地址包括地址常 数及标识符常量,指明反汇编的起始地址。
(9) WK
观察点删除命令,格式如下: WK n1[n2 ],[……] ;删除指定的观察点,n为字符型,整型 常数 WK * ;删除所有的观察点
(10) WS
观察点设置命令,格式如下:WS 表达式[,n][LINE]关键字LINE存在时,观察点表达式单行输出LINE缺省时,观察点表达式n行输出。
(11) G
连续运行命令,格式如下: G [起始地址],[终止地址]地址为标识符常量或地址常数,地址缺省时,为连续运行。
(12) T/P
单步运行指令,格式如下: T/P n ;n指至单行运行的步数,P指给用户当调用某函数时,把它作为一步处理,并不进入该函数运行。
(13) PA
性能分析操作指令,其分以下几种:PA显示当前所设置的性能分析程度段PA Kill *删除当前所设置的所有性能分析程序段PA Kill n1 [,n2],[……]删除指定的性能分析程序段PA 地址范围设置性能分析程序段,地址范围可以起始地址和结束地址的方式给出,也可给出函数名,行号范围。PA Reset复位性能分析窗口(PA Windows),清除所有的记录。
(14) BD
断点失效命令,格式如下:BD n1 [,n2],[,……] ;disable指定的断点DB * ;disable所有的断点
(15) BE
断点使能命令,格式如下:BE M [,n2],[,……] ;使能指定的断点BE * ;使能所有的断点
(16) BK
断点删除指令,格式如下:BK M[,n2],[,……] ;删除指定的断点BK * ;删除所有的断点
(17) BL
断点显示指令,显示所有被定义的断点。
(18) BS
断点定义指令,dScope支持多达40个断点,具体格式如下:a.BS 表达式[,count] [,“cmd”]count:经过该断点的次数 [选项]“cmd”:断点到达后附带执行的dScope命令(连项)表达式一个条件表达式,此时该断点称为条件断点(运算符为&.&&,<<=>,>=,= =,!=)BS READ 表达式 [,count] [,“cmd”]BS WRITE 表达式 [,count] [“cmd”]BS READWRITE 表达式 [,count] [,“cmd”]以上三种断点称访问式(Access断点),当某一址或变量被访问(R/W)或某些值被读写时,程序被中断。
(19) Define button
图标定义指令,用于当窗口(Toolbox)
(20) !
DOS窗口Open命令,以“EXIT”命令退出DOS窗口。
(21) Include
文件包含命令,格式如下:Include [路径] 文件名dScope支持以文件包含的方式调入并执行调试命令文件,用户自定义函数文件,调试命令文件可以有后缀,也可无后缀。
(22) Load
加载命令,格式如下:Load [路径] 文件名 Load指令能够加载的文件必须具有以下格式之一。Intel Hex/Hex 386格式Intel Object (OMF_51) 格式Intel Object (OMF-251) 格式dScope的CPU驱动文件(.DLL)
(23) LOG
Command Window存盘指令,用于将Command Windows中的内容输出到指定的文件中,格式如下:LOG > [路径]文件名 ;创建一个新文件LOG >> [路径]文件名 ;将Command Windows的内容输出到某个已 存在的文件中。LOG OFF 完成输出操作并开闭该文件LOG指令只将LOG>或LOG>>与LOG OFF指令之间的操作命令存入该指定文件。
(24) Reset
复位指令,具体格式如下:Reset ;执行dScope的复位Reset Map ;复位外部数据空间Reset Var ;复位SET指令定义的变量
(25) Save
该指令将一段内存映象以19EX386/HEX的格式存盘,具体格式如下:Save 路径 文件名:地址1、地址2地址1、地址2指所要保存的空间范围,既可是标识符,也可是址常数。
(26) SET
该指令回来定义dScope目标代码预定义变量的含义,这些预定义变量包括以下二种:SRC ;指出所在的路径F1~F12;对应于键盘上的12个功能键,定义这些功能键的 含义。SET指令的格式为:SET 变量=“字符串”SET 变量
10. 函数
dScope支持三种函数,即dScope预定义函数,用户自定义函数和信号函数,分别详述如下:
(1) dScope预定义函数
dScope号提供8个预定义函数(可视为dScope的库函数)①Void Printf(“String”,输出表列)屏幕打印函数,与ANSI C的Printf ( ) 函数相同②Void exec(“Command__String”)Command__String为一有效的命令字符串,此函数用于在运行用户自定义函数的过程中执行dScope命令,这个函数提供了一个很重要的编制测试命令文件的方法。③int getint(“Prompt__String”);从键盘输入一个整数int getlong (“Prompt__String”);从键盘输入一个长整数float getfloat (“Prompt__String”);从键盘输入一个浮点数以上这三个函数被执行时,dScope会弹出一个dialog box等待用户输入数据,其标题栏上是“Prompt__String”,利用这个函数,不仅可以为变量赋值,也可使用户得以看清前一阶段的测试结果。④int rand (int seed) 该函数会输出一个随机数(-32768~32768)⑤Void memeset (ulorg start , ulong end ,uchar val) 该函数用于给地址范围(Start__end)内的内存赋值(Val)⑥Void twatch (Long cycles)定时函数,时间由(Long cycles)决定,它是以指令周期计数的,它也 用于产生一个信号波形,该函数必须用于信号函数中。
(2) 用户自定义函数
这类函数不同于用户源程序中的数函,其定义格式为Func 返回类型 函数名(参数序列) { 语句}返回类型如前所述的变量类型用户自定义函数中的语句与ANSI C相似,只是不支持数组结构、联合、指针,可引用dScope系统变量,define语句定义的变量和用户源程序变量,不支持dScope命令,如想在函数中执行dScope命令,要借助于exec(“Command__String”)函数,可引用dScope预定义的函数(除了twatch ( )函数),不支持ANSI C的库函数。
(3) 信号函数
用于产生具有某一波形的信号,定义格式为:Signal返回类型函数名(参数长列){ 语句 }信号函数主要是利用twatch ( )函数,目前dScope版本在提供这一功能上面还有一定问题。
(4) dScope函数与ANSI函数的区别
① 不支持条件汇编② 不支持头文件③ 无变量的初始化④ 不支持数组、结构、指针⑤ 调用方式不同,自定义函数和信号函数首先要包含一个函数文件之中,然而在测试命令文件中以Inclule指令调用该函数文件,最后才能以函数名调用之。⑥ 函数调用只支持传值方式。