#include "Stafx.h" ; //棋盘上有13个格子,那么角点的数目12 ; ; //图片的总张数 int main(int argc, char** argv) { ; int board_n=board_h*board_w; //一张图像上,角点的数目 CvSize board_sz=cvSize(board_w,board_h); CvMat* object_points=cvCreateMat(image_count*board_n,,CV_32FC1); //实际坐标系(以棋盘左上角第一个角点为坐标原点),角点的坐标,单位是方块 CvMat* image_points=cvCreateMat(image_count*board_n,,CV_32FC1); //在图像上找到角点的坐标,坐标原点图像左上角,单位像素 CvMat* point_counts=cvCreateMat(board_n,,CV_32SC1); //每个图像上角点个数 ; //累计图像上所有角点被找到图像的张数 while (count++<image_count) { std::string filename="E:\\软件学习\\LearningOpenCV_Code\\calibration\\"; ]; itoa(count,str,);//转换为字符串 std::string str1; int length=strlen(str); *(str+length)='.'; *(str+length+)='j'; *(str+length+)='p'; *(str+length+)='g'; *(str+length+)='\0'; str1=str; filename+=str1; IplImage* src=cvLoadImage(filename.c_str(),CV_LOAD_IMAGE_UNCHANGED); IplImage* gray=cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,); cvCvtColor(src,gray,CV_RGB2GRAY); CvPoint2D32f* corners=new CvPoint2D32f[board_n]; //一张图像上角点的坐标 int corner_count; //一张图像上角点的数目 int found=cvFindChessboardCorners(src,board_sz,corners,&corner_count, CV_CALIB_CB_ADAPTIVE_THRESH|CV_CALIB_CB_FILTER_QUADS);//找到棋盘的角点,如果所有角点找到返回1,否则返回0,这里指的是所有的角点 cvFindCornerSubPix(gray, corners, corner_count, cvSize(,),cvSize(-,-), cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,, 0.1)); //寻找亚素点,gray一定要是8位单通道的图像 cvDrawChessboardCorners(src,board_sz,corners,corner_count,found); //将角点画出,src一定要是彩色图像 //cvShowImage("1",src); //cvWaitKey(); if (corner_count==board_n) //一张图像上所有角点被找到 { int step=a*board_n; //第k幅角点全部找到图像上角点的存储的起始地址 ; for (int i=step;j<corner_count;i++,j++) { CV_MAT_ELEM(*object_points,)=j/board_w; //角点的横坐标,单位不是像素,而是以棋盘上每个方块为一个单位 CV_MAT_ELEM(*object_points,)=j%board_w; //角点的纵坐标,每个方块为一个单位 CV_MAT_ELEM(*object_points,)=; //齐次坐标,表示点 CV_MAT_ELEM(*image_points,)=corners[j].x; //图像坐标系的坐标 CV_MAT_ELEM(*image_points,)=corners[j].y; }; CV_MAT_ELEM(*point_counts,)=board_n; a++; } } //由于图像中存在所有角点未找到的情况,所以上面object_points的空间未存满,需要重新定义 CvMat* object_points2=cvCreateMat(a*board_n,,CV_32FC1); CvMat* image_points2=cvCreateMat(a*board_n,,CV_32FC1); CvMat* point_counts2=cvCreateMat(a,,CV_32SC1); CvMat* intrinsic_matrix=cvCreateMat(,,CV_32FC1); //相机内参数矩阵 CvMat* distortion_coeffs=cvCreateMat(,,CV_32FC1); //畸变系数矩阵 CvMat* rotation_vector=cvCreateMat(a,,CV_32FC1); //旋转矩阵 CvMat* translation_vector=cvCreateMat(a,,CV_32FC1); //平移矩阵 ;i<a*board_n;i++) { CV_MAT_ELEM(*object_points2,)=CV_MAT_ELEM(*object_points,); CV_MAT_ELEM(*object_points2,)=CV_MAT_ELEM(*object_points,); CV_MAT_ELEM(*object_points2,)=; CV_MAT_ELEM(*image_points2,)=CV_MAT_ELEM(*image_points,); CV_MAT_ELEM(*image_points2,)=CV_MAT_ELEM(*image_points,); } ;i<a;i++) CV_MAT_ELEM(*point_counts2,)=CV_MAT_ELEM(*point_counts,); cvReleaseMat(&object_points); cvReleaseMat(&image_points); cvReleaseMat(&point_counts); //内置参数矩阵设置,初始化 CV_MAT_ELEM(*intrinsic_matrix,,)=1.0; CV_MAT_ELEM(*intrinsic_matrix,,)=1.0; //校正相机参数,cvSize(1600,1200)为输入图像的真实长度和宽度,单位为像素 cvCalibrateCamera2(object_points2,image_points2,point_counts2,cvSize(,), intrinsic_matrix,distortion_coeffs,rotation_vector,translation_vector,CV_CALIB_FIX_ASPECT_RATIO); //图像校正 IplImage* mapx=cvCreateImage(cvSize(,),IPL_DEPTH_32F,); IplImage* mapy=cvCreateImage(cvSize(,),IPL_DEPTH_32F,); cvInitUndistortMap(intrinsic_matrix,distortion_coeffs,mapx,mapy); IplImage* test_image=cvLoadImage("E:\\软件学习\\LearningOpenCV_Code\\calibration\\22.jpg",CV_LOAD_IMAGE_UNCHANGED); if (!test_image) { std::cout<<"error"<<std::endl; } cvShowImage("原图像",test_image); IplImage* t=cvCloneImage(test_image); cvRemap(t,test_image,mapx,mapy); cvShowImage("校正后图像",test_image); cvWaitKey(); ; }
测试图片:opencv课后习题答案中LearningOpencv_Code中calibration文件中的图片