什么是图像分割
图像分割(Image Segmentation)是图像处理最重要的处理手段之一
图像分割的目标是将图像中像素根据一定的规则分为若干(N)个cluster集合,每个集合包含一类像素。
根据算法分为监督学习方法和无监督学习方法,图像分割的算法多数都是无监督学习方法 - KMeans 距离变换常见算法有两种
- 不断膨胀/腐蚀得到
- 基于倒角距离 分水岭变换常见的算法
- 基于浸泡理论实现
cv::distanceTransform(
InputArray src,
OutputArray dst,
OutputArray labels, //离散维诺图输出
int distanceType, // DIST_L1/DIST_L2,
int maskSize, // 3x3,最新的支持5x5,推荐3x3、
int labelType=DIST_LABEL_CCOMP //dst输出8位或者32位的浮点数,单一通道,大小与输入图像一致
) cv::watershed(
InputArray image,
InputOutputArray markers
)
处理流程
. 将白色背景变成黑色-目的是为后面的变换做准备
. 使用filter2D与拉普拉斯算子实现图像对比度提高,sharp
. 转为二值图像通过threshold
. 距离变换
. 对距离变换结果进行归一化到[~]之间
. 使用阈值,再次二值化,得到标记
. 腐蚀得到每个Peak - erode
. 发现轮廓 – findContours
. 绘制轮廓- drawContours
. 分水岭变换 watershed
. 对每个分割区域着色输出结果
int main(int argc, char** argv) {
char input_win[] = "input image";
char watershed_win[] = "watershed segmentation demo";
Mat src = imread(STRPAHT2);
if (src.empty()) {
printf("could not load image...\n");
return -;
}
namedWindow(input_win, CV_WINDOW_AUTOSIZE);
imshow(input_win, src); // 将白色背景变成黑色-为后面的变换做准备
for (int row = ; row < src.rows; row++) {
for (int col = ; col < src.cols; col++) {
if (src.at<Vec3b>(row, col) == Vec3b(, , )) {
src.at<Vec3b>(row, col)[] = ;
src.at<Vec3b>(row, col)[] = ;
src.at<Vec3b>(row, col)[] = ;
}
}
}
//namedWindow("black background", CV_WINDOW_AUTOSIZE);
//imshow("black background", src); // sharpen
Mat kernel = (Mat_<float>(, ) << , , , , -, , , , );
Mat imgLaplance;
Mat sharpenImg = src;
//使用filter2D与拉普拉斯算子实现图像对比度提高,sharp
filter2D(src, imgLaplance, CV_32F, kernel, Point(-, -), , BORDER_DEFAULT);
src.convertTo(sharpenImg, CV_32F);
Mat resultImg = sharpenImg - imgLaplance; resultImg.convertTo(resultImg, CV_8UC3);
imgLaplance.convertTo(imgLaplance, CV_8UC3);
imshow("sharpen image", resultImg); // convert to binary
Mat binaryImg;
cvtColor(src, resultImg, CV_BGR2GRAY);
// 转为二值图像通过threshold
threshold(resultImg, binaryImg, , , THRESH_BINARY | THRESH_OTSU);
imshow("binary image", binaryImg); Mat distImg;
// 每一个非零点距离离自己最近的零点的距离
distanceTransform(binaryImg, distImg, DIST_L1, CV_DIST_C, ); // 归一化
normalize(distImg, distImg, , , NORM_MINMAX);
imshow("distance result", distImg); // 使用阈值,再次二值化,得到标记
threshold(distImg, distImg, ., , THRESH_BINARY);
Mat k1 = Mat::ones(, , CV_8UC1);
// 膨胀/腐蚀
erode(distImg, distImg, k1, Point(-, -));
imshow("distance binary image", distImg); // markers
Mat dist_8u;
distImg.convertTo(dist_8u, CV_8U);
vector<vector<Point>> contours;
// 发现轮廓
findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(, )); // 绘制轮廓
Mat markers = Mat::zeros(src.size(), CV_32SC1);
for (size_t i = ; i < contours.size(); i++) {
drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i) + ), -);
}
circle(markers, Point(, ), , Scalar(, , ), -);
imshow("my markers", markers * ); // 分水岭变换
watershed(src, markers);
Mat mark = Mat::zeros(markers.size(), CV_8UC1);
markers.convertTo(mark, CV_8UC1);
bitwise_not(mark, mark, Mat());
imshow("watershed image", mark); // 对每个分割区域着色输出结果
vector<Vec3b> colors;
for (size_t i = ; i < contours.size(); i++) {
int r = theRNG().uniform(, );
int g = theRNG().uniform(, );
int b = theRNG().uniform(, );
colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
} Mat dst = Mat::zeros(markers.size(), CV_8UC3);
for (int row = ; row < markers.rows; row++) {
for (int col = ; col < markers.cols; col++) {
int index = markers.at<int>(row, col);
if (index > && index <= static_cast<int>(contours.size())) {
dst.at<Vec3b>(row, col) = colors[index - ];
}
else {
dst.at<Vec3b>(row, col) = Vec3b(, , );
}
}
}
imshow("Final Result", dst); waitKey();
return ;
}
04-30 21:26