题目描述
一次舞会有n个男孩和n个女孩。每首曲子开始时,所有男孩和女孩恰好配成n对跳交谊舞。每个男孩都不会和同一个女孩跳两首(或更多)舞曲。有一些男孩女孩相互喜欢,而其他相互不喜欢(不会”单向喜欢“)。每个男孩最多只愿意和k个不喜欢的女孩跳舞,而每个女孩也最多只愿意和k个不喜欢的男孩跳舞。给出每对男孩女孩是否相互喜欢的信息,舞会最多能有几首舞曲?
输入输出格式
输入格式:
第一行包含两个整数n和k。以下n行每行包含n个字符,其中第i行第j个字符为'Y'当且仅当男孩i和女孩j相互喜欢。
输出格式:
仅一个数,即舞曲数目的最大值。
输入输出样例
3 0
YYY
YYY
YYY
3
说明
N<=50 K<=30
Solution:
本题太毒,调了几天,终于又填完坑了~
像这种需要配对,而且数据还这么小的题目,一眼就容易想到网络最大流。
那么如果直接去跑最大流的话,显然不可行。
题意中说相同的两个人只能搭配一次,那么最多也就$50$次,很容易想到从大到小枚举天数然后跑最大流判断(我写了下枚举+最大流,事实证明是可以过的),但是,本题有很明显的单调性,即若前$i$天可以完整搭配,则答案一定在$[i,n]$之间,否则就在$[0,i-1]$之间。于是考虑二分答案,然后跑最大流$check$。
再来考虑最大流$check$是否可行。每个男生的点和女生的点相匹配,只有两种情况,要么不互相喜欢使用$1$次限制,要么互相喜欢不需要花费。
因为每人最多和不喜欢的匹配$k$次,于是我们将每个学生都拆成两个点,之间连边为$k$表示限制,假设男生$a$被拆为$a1,a2$($a1$是$a$的全局,$a2$是与$a$不互相喜欢的分点),女生$b$被拆为$b1,b2$(类比男生的含义),每次二分的天数$x$,重新建图:$s\rightarrow a1$连容量为$x$($s$为源点,该边表示每个人应该匹配$x$次),$a1\rightarrow a2$连容量为$k$(表示$a$最多和$k$个不喜欢的女生匹配),$b1,b2$类比男生连法($b2\rightarrow b1\;\;b1\rightarrow t$)。每次若男生$a$和女生$b$不喜欢,连容量为$1$的边$a2\rightarrow b2$,若$a$和$b$互相喜欢,则应直接连容量为$1$的边$a1\rightarrow b1$。
然后每次跑完最大流后,看最大流是否等于$x*n$,便能判断是否成立。(最后需要注意的是二分的边界值:$l=0,r=n$,最少就是$1$次也无法搭配,最多就是$n$人互相搭配一次)
代码:
#include<bits/stdc++.h>
#define il inline
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Min(a,b) ((a)>(b)?(b):(a))
#define debug printf("%d %s\n",__LINE__,__FUNCTION__)
using namespace std;
const int N=,inf=;
int s,t=,ans,dis[],n,k,to[N],net[N],h[],cnt=,w[N];
bool mp[][]; il void add(int u,int v,int c){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt,w[cnt]=c;} il bool bfs(){
queue<int>q;
memset(dis,-,sizeof(dis));
q.push(s),dis[s]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=h[u];i;i=net[i])
if(dis[to[i]]==-&&w[i]>)dis[to[i]]=dis[u]+,q.push(to[i]);
}
return dis[t]!=-;
} il int dfs(int u,int op){
if(u==t)return op;
int flow=,used=;
for(int i=h[u];i;i=net[i]){
int v=to[i];
if(dis[v]==dis[u]+&&w[i]>){
used=dfs(v,Min(w[i],op));
if(!used)continue;
flow+=used,op-=used;
w[i]-=used,w[i^]+=used;
if(!op)break;
}
}
if(!flow)dis[u]=-;
return flow;
} il bool check(int x){
memset(h,,sizeof(h));
cnt=;
For(i,,n){
add(s,i,x),add(i,s,);
add(i,i+n,k),add(i+n,i,);
add(i+n*,t,x),add(t,i+n*,);
add(i+n*,i+n*,k),add(i+n*,i+n*,);
}
For(i,,n) For(j,,n){
if(mp[i][j])add(i,j+*n,),add(j+*n,i,);
else add(i+n,j+*n,),add(j+*n,i+n,);
}
int tot=;
while(bfs())tot+=dfs(s,inf);
if(tot==n*x)return ;
return ;
} int main(){
ios::sync_with_stdio();
cin>>n>>k;
char p;
For(i,,n) For(j,,n) {
cin>>p;
if(p=='Y')mp[i][j]=;
if(n==&&(p=='Y'||k>=)){cout<<;return ;}
}
int mid,l=,r=n;
while(l<=r){
mid=l+r>>;
if(check(mid))l=mid+,ans=mid;
else r=mid-;
}
cout<<ans;
return ;
}