题意:
给出一颗树,每个结点有取值范围\([1,D]\)。
现在有限制条件:对于一个子树,根节点的取值要大于等于子数内各结点的取值。
问有多少种取值方案。
思路:
- 手画一下发现,对于一颗大小为\(sz\)的数,最终的答案为一个\(sz+1\)次为最高次幂的多项式。
- 因为节点数\(n\leq 3000\),所以暴力求出后插值即可。
简略证明:对于一个链,显然,一个长度为\(x\)的链,最终的结果为\(x+1\)次的多项式;考虑两条链的合并:长度为\(x\)的链和长度为\(y\)的链,显然两者相乘最终为\(x+y+2\)次的多项式,因为合并过后会多一个父节点,那么就是有\(x+y+1\)个点。
归纳一下就有上面说的结论了。
代码如下:
/*
* Author: heyuhhh
* Created Time: 2019/11/18 20:20:04
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 3005, MOD = 1e9 + 7;
ll qpow(ll a, ll b) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
}
int n, D;
vector <int> g[N];
int res[N];
int pre[N][N];
void dfs(int u, int fa) {
int son = 0;
for(auto v : g[u]) if(v != fa) {
dfs(v, u); ++son;
}
if(!son) {
for(int i = 1; i <= n; i++) pre[u][i] = i;
} else {
for(int i = 1; i <= n; i++) res[i] = 1;
for(auto v : g[u]) if(v != fa) {
for(int i = 1; i <= n; i++) res[i] = 1ll * res[i] * pre[v][i] % MOD;
}
for(int i = 1; i <= n; i++) pre[u][i] = (pre[u][i - 1] + res[i]) % MOD;
}
}
struct Lagrange {
static const int SIZE = 3005;
ll f[SIZE], fac[SIZE], inv[SIZE], pre[SIZE], suf[SIZE];
int n;
inline void add(ll &x, int y) {
x += y;
if(x >= MOD) x -= MOD;
}
void init(int _n) {
n = _n;
fac[0] = 1;
for (int i = 1; i < SIZE; ++i) fac[i] = fac[i - 1] * i % MOD;
inv[SIZE - 1] = qpow(fac[SIZE - 1], MOD - 2);
for (int i = SIZE - 1; i >= 1; --i) inv[i - 1] = inv[i] * i % MOD;
f[0] = 0;
}
ll calc(ll x) {
if (x <= n) return f[x];
pre[0] = x % MOD;
for (int i = 1; i <= n; ++i) pre[i] = pre[i - 1] * ((x - i) % MOD) % MOD;
suf[n] = (x - n) % MOD;
for (int i = n - 1; i >= 0; --i) suf[i] = suf[i + 1] * ((x - i) % MOD) % MOD;
ll res = 0;
for (int i = 0; i <= n; ++i) {
ll tmp = f[i] * inv[n - i] % MOD * inv[i] % MOD;
if (i) tmp = tmp * pre[i - 1] % MOD;
if (i < n) tmp = tmp * suf[i + 1] % MOD;
if ((n - i) & 1) tmp = MOD - tmp;
add(res, tmp);
}
return res;
}
}lagrange;
void run(){
for(int i = 2; i <= n; i++) {
int x; cin >> x;
g[i].push_back(x);
g[x].push_back(i);
}
lagrange.init(n);
dfs(1, 0);
for(int i = 1; i <= n; i++) lagrange.f[i] = pre[1][i];
int ans = lagrange.calc(D);
cout << ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
while(cin >> n >> D) run();
return 0;
}