在一些针对Biomarker的临床研究中, 我们常常需对Biomarker进行模型拟合, 预测效果评估等等.🥰
这个包可以完美解决这些问题, 并且直接输出发表级图表, 简单介绍一下用法给大家吧.🥳

2用到的包

rm(list = ls())
#devtools::install_github("ncullen93/abaR")
library(aba)
library(tidyverse)
library(ggsci)

3示例数据

dat <- adnimerge %>% 
dplyr::filter(VISCODE == 'bl')

DT::datatable(dat)

4变量一览

看一下都有什么变量, 都是什么类型. 🤞

str(dat)

5建立模型

5.1 原函数

大家可以通过这种方式来建立模型.

  aba_model(
data = NULL,
groups = NULL,
outcomes = NULL,
predictors = NULL,
covariates = NULL,
stats = NULL,
evals = NULL,
include_basic = TRUE
)

5.2 pipeline形式

这里也提供了pipeline的形式来编写代码, 个人也是更倾向于这种方式, 大家试一下吧. 😏

我们在这里设定两个结局指标: ConvertedToAlzheimersCSF_ABETA_STATUS_bl.🤒
两个预测指标, 即Biomarker, PLASMA_PTAU181_blPLASMA_NFL_bl. 🤫

模型为logistic regression. 📈

model <- aba_model() %>% 
set_data(dat) %>%
set_groups(DX_bl %in% c('MCI','AD')) %>%
set_outcomes(ConvertedToAlzheimers, CSF_ABETA_STATUS_bl) %>%
set_predictors(
PLASMA_PTAU181_bl,
PLASMA_NFL_bl,
c(PLASMA_PTAU181_bl, PLASMA_NFL_bl)
) %>%
set_covariates(AGE, GENDER, EDUCATION) %>%
set_stats(stat_glm(std.beta=T))

model

Note! 这里我们注意下如何进行Biomarker联合应用, 可写为 c(PLASMA_PTAU181_bl, PLASMA_NFL_bl). 😘


5.3 拟合

model <- model %>% 
fit()
model

5.4 模型数据

拟合完以后我们就获得了模型的结果, 大家可以大致看一下.🤓

model_summary <- model %>% 
summary()

model_summary

6模型结果的可视化

这个包提供了很多可视化的参数, 可以直接将summary的结果传递给画图函数, 非常简单. 😘

6.1 coeffficients可视化

这里需要说明一下, 函数内自带的配色只有4种, 即jama, nature, lancet, none.
但是大家可以按照ggplot语法更改颜色.🤜

model_summary %>% 
aba_plot_coef(coord_flip=T,
palette = 'nature')

6.2 AUC可视化

看看各个模型的AUC吧.😗

model_summary %>% 
aba_plot_metric(palette = 'nature')

6.3 ROC可视化

model_summary %>% 
aba_plot_roc()

6.4 Risk density plot

批量出图, 大家想看哪个predictorRisk density plot就提取哪个吧. 🤪

fig <- model %>%
aba_plot_risk_density()
fig

随便提取一个看看吧~~~😉

fig$fig[1]

7补充一下

这个包还有很多其他强大的功能, 大家可以去进一步地探索一下。😘

欢迎大家留言说一下其他强大的函数哦~


这里附上所有函数官方解释:👇


Aba | 全自动biomarker分析神包!~(原作者用这个包发了三篇Nature啦~)-LMLPHP

📍 🤩 ComplexHeatmap | 颜狗写的高颜值热图代码!
📍 🤥 ComplexHeatmap | 你的热图注释还挤在一起看不清吗!?
📍 🤨 Google | 谷歌翻译崩了我们怎么办!?(附完美解决方案)
📍 🤩 scRNA-seq | 吐血整理的单细胞入门教程
📍 🤣 NetworkD3 | 让我们一起画个动态的桑基图吧~
📍 🤩 RColorBrewer | 再多的配色也能轻松搞定!~
📍 🧐 rms | 批量完成你的线性回归
📍 🤩 CMplot | 完美复刻Nature上的曼哈顿图
📍 🤠 Network | 高颜值动态网络可视化工具
📍 🤗 boxjitter | 完美复刻Nature上的高颜值统计图
📍 🤫 linkET | 完美解决ggcor安装失败方案(附教程)
📍 ......

本文由 mdnice 多平台发布

12-15 11:48