对于复数变量的实值函数 f ( z , z ∗ ) f(z ,z^*) f(z,z), 其微分可写为:
d f ( z , z ∗ ) = ∂ f ∂ z d z + ∂ f ∂ z ∗ d z ∗ df(z, z^*) = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial z^*}dz^* df(z,z)=zfdz+zfdz

有:
( ∂ f ∂ z ) ∗ = ∂ f ∗ ∂ z ∗ = ∂ f ∂ z ∗ ( f 为 实 值 ) , d z = ( d z ∗ ) ∗ \left(\frac{\partial f}{\partial z}\right)^*= \frac{\partial f^*}{\partial z^*} = \frac{\partial f}{\partial z^*} (f为实值), dz =(dz^*)^* (zf)=zf=zf(f),dz=(dz)

因此:
∂ f ∂ z d z = ( ∂ f ∂ z ∗ ) ∗ ( d z ∗ ) ∗ = ( ∂ f ∂ z ∗ d z ∗ ) ∗ \frac{\partial f}{\partial z}dz= (\frac{\partial f}{\partial z^*})^*(dz^*)^*=(\frac{\partial f}{\partial z^*}dz^*)^* zfdz=(zf)(dz)=(zfdz)

代入得到:
f = 2 ℜ { ∂ f ∂ z ∗ d z ∗ } = 2 ℜ { ( ∂ f ∂ z ∗ ) ∗ d z } f = 2\Re\{\frac{\partial f}{\partial z^*}dz^*\}=2\Re\{(\frac{\partial f}{\partial z^*})^*dz\} f=2{zfdz}=2{(zf)dz}

根据柯西-施瓦茨不等式, d z dz dz应取:

d z = ∂ f ∂ z ∗ dz = \frac{\partial f}{\partial z^*} dz=zf

也即共轭梯度。

12-14 07:18