动态TopicModel BERTopic 中文 长文本 SentenceTransformer BERT 均值特征向量 整体特征分词Topic
主题模型与BERTopic
主题模型Topic Model最常用的算法是LDA隐含迪利克雷分布,然而LDA有很多缺陷,如:
- LDA需要主题数量作为输入,非常依赖这个值;
- LDA存在长尾问题,对于大量低频词数据集表现不好;
- LDA只考虑词频,没有考虑词与词之间的关系;
- LDA不考虑时间信息,难以应用到动态主题模型任务。
为了解决这些问题,学界提出了DTM、ETM、DETM、BERTopic等方法,其中BERTopic是近年提出的热度很高的方法,它主要思路是寻找文本整体的BERT特征向量,然后对各文本特征在样本空间中做聚类,找到Topic,然后基于TF-IDF模型寻找每个Topic的关键词,最后寻找Topic在每个时间段的关键词表示。
然而BERTopic也存在几个问题:
- BERTopic本身是为英文任务设计的,不适应于中文任务,因为英文无需分词,词与词之间天然用空格隔开,BERTopic对英文文本直接提取BERT特征,然后在空格隔开的词上找每个Topic的关键词,很便捷;对于中文来说,中文是需要分词的,如果对中文文本整体提取特征,就需要在中文的分词结果上提取每个Topic的关键词;
- 由于提取的是BERT特征,BERT本身要求文本长度不超过512,否则就会截断,对于这个问题,BERTopic里面是直接进行了截断,然而这种方法并不很合适,对长文本不太友好;
分别针对这两个问题,本文做了两个改进:
在文本整体上提取特征,在分词结果上提取关键词
改法很简单,调用topic_model.fit_transform()
时,同时传入原始文本和分词(以及去停用词)结果,修改_bertopic.py
中的源码,主要是改fit_transform()
函数;
对文本的每512个字符提取BERT特征,然后求均值作为文本特征
改法很简单,经过读源码可知主要是SenteTransformer
包里的SentenceTransformer.py
里的encode()
函数在进行特征提取,然后更改一下这个函数,更改为如下结果:
def encode(self, sentences: Union[str, List[str]],
batch_size: int = 1,
show_progress_bar: bool = None,
output_value: str = 'sentence_embedding',
convert_to_numpy: bool = True,
convert_to_tensor: bool = False,
device: str = None,
normalize_embeddings: bool = False) -> Union[List[Tensor], ndarray, Tensor]:
"""
Computes sentence embeddings
:param sentences: the sentences to embed
:param batch_size: the batch size used for the computation
:param show_progress_bar: Output a progress bar when encode sentences
:param output_value: Default sentence_embedding, to get sentence embeddings. Can be set to token_embeddings to get wordpiece token embeddings. Set to None, to get all output values
:param convert_to_numpy: If true, the output is a list of numpy vectors. Else, it is a list of pytorch tensors.
:param convert_to_tensor: If true, you get one large tensor as return. Overwrites any setting from convert_to_numpy
:param device: Which torch.device to use for the computation
:param normalize_embeddings: If set to true, returned vectors will have length 1. In that case, the faster dot-product (util.dot_score) instead of cosine similarity can be used.
:return:
By default, a list of tensors is returned. If convert_to_tensor, a stacked tensor is returned. If convert_to_numpy, a numpy matrix is returned.
"""
self.eval()
if show_progress_bar is None:
show_progress_bar = (logger.getEffectiveLevel()==logging.INFO or logger.getEffectiveLevel()==logging.DEBUG)
if convert_to_tensor:
convert_to_numpy = False
if output_value != 'sentence_embedding':
convert_to_tensor = False
convert_to_numpy = False
input_was_string = False
if isinstance(sentences, str) or not hasattr(sentences, '__len__'): #Cast an individual sentence to a list with length 1
sentences = [sentences]
input_was_string = True
if device is None:
device = self._target_device
self.to(device)
all_embeddings = []
length_sorted_idx = np.argsort([-self._text_length(sen) for sen in sentences])
sentences_sorted = [sentences[idx] for idx in length_sorted_idx]
maxworklength = 512 # 每次最多提取maxlength个字的特征
for start_index in trange(0, len(sentences), batch_size, desc="Batches", disable=False):
# sentences_batch = sentences_sorted[start_index:start_index+batch_size] # sentences_batch里面有batch_size个文本
tempsentence = sentences_sorted[start_index]
sentence_length = len(tempsentence)
if sentence_length%maxworklength:
numofclip = sentence_length//maxworklength+1
else:
numofclip = sentence_length//maxworklength
if sentence_length:
features = self.tokenize([tempsentence[clipi*maxworklength:(clipi+1)*maxworklength] for clipi in range(numofclip)])
else:
features = self.tokenize([''])
features = batch_to_device(features, device)
with torch.no_grad():
out_features = self.forward(features)
if output_value == 'token_embeddings':
embeddings = []
for token_emb, attention in zip(out_features[output_value], out_features['attention_mask']):
last_mask_id = len(attention)-1
while last_mask_id > 0 and attention[last_mask_id].item() == 0:
last_mask_id -= 1
embeddings.append(token_emb[0:last_mask_id+1])
elif output_value is None: #Return all outputs
embeddings = []
for sent_idx in range(len(out_features['sentence_embedding'])):
row = {name: out_features[name][sent_idx] for name in out_features}
embeddings.append(row)
else: #Sentence embeddings
embeddings = out_features[output_value]
embeddings = embeddings.detach()
if normalize_embeddings:
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
# fixes for #522 and #487 to avoid oom problems on gpu with large datasets
if convert_to_numpy:
embeddings = embeddings.cpu() # 维度是[batch_size, 768]
# all_embeddings.extend(np.average(embeddings, axis=0))
all_embeddings.append(np.average(embeddings, axis=0).tolist())
all_embeddings = [all_embeddings[idx] for idx in np.argsort(length_sorted_idx)]
# if convert_to_tensor:
# all_embeddings = torch.stack(all_embeddings)
# elif convert_to_numpy:
# all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
# if input_was_string:
# all_embeddings = all_embeddings[0]
# ans = np.mean(np.array(all_embeddings), axis=0).tolist()
return np.array(all_embeddings)
具体的提取特征的代码是调用的sentence_transformers>models>Transformer.py
里的tokenize
函数。
完成。