抽样分布
所谓抽样分布是指统计量的概率分布。确定统计量的分布是数理统计学的基本问题之一。
几个重要分布
Γ \Gamma Γ 分布
Γ \Gamma Γ 分布具有下列性质:
- 若 X ∼ Γ ( α , λ ) X\sim \Gamma(\alpha, \lambda) X∼Γ(α,λ),则 E ( X ) = α / λ , D ( x ) = α / λ 2 . E(X)=\alpha/\lambda, D(x)=\alpha/\lambda^2. E(X)=α/λ,D(x)=α/λ2.
- 可加性。若 X i ∼ Γ ( α i , λ ) , i = 1 , . . . , n X_i\sim \Gamma(\alpha_i, \lambda),i=1,...,n Xi∼Γ(αi,λ),i=1,...,n,且 X 1 , . . . , X n X_1,...,X_n X1,...,Xn 相互独立,则 X 1 + . . . + X n ∼ Γ ( α 1 + . . . + α n , λ ) X_1+...+X_n\sim\Gamma(\alpha_1+...+\alpha_n,\lambda) X1+...+Xn∼Γ(α1+...+αn,λ)
- 在 Γ \Gamma Γ 分布中取 α = 1 \alpha=1 α=1,即得指数分布 Exp ( λ ) \text{Exp}(\lambda) Exp(λ) f ( x ; λ ) = { λ e − λ x , x > 0 0 , x ≤ 0 f(x;\lambda)=\begin{cases} \lambda e^{-\lambda x}, &x>0 \\ 0, &x\le0 \end{cases} f(x;λ)={λe−λx,0,x>0x≤0 由此可得性质 2 的一个推论:若 X 1 , . . . , X n X_1,...,X_n X1,...,Xn 为 i.i.d. \text{i.i.d.} i.i.d.,且 X 1 ∼ Exp ( λ ) X_1\sim \text{Exp}(\lambda) X1∼Exp(λ),则 ∑ i = 1 n X i ∼ Γ ( n , λ ) \sum_{i=1}^nX_i \sim \Gamma(n,\lambda) i=1∑nXi∼Γ(n,λ)
β \beta β 分布
β \beta β 分布具有下列性质:
- 若 X ∼ β ( a , b ) X\sim \beta(a,b) X∼β(a,b),则 E ( X ) = a a + b , D ( X ) = a b ( a + b ) 2 ( a + b + 1 ) E(X)=\frac{a}{a+b},D(X)=\frac{ab}{(a+b)^2(a+b+1)} E(X)=a+ba,D(X)=(a+b)2(a+b+1)ab
- 若 X ∼ Γ ( a , 1 ) , Y ∼ Γ ( b , 1 ) X\sim \Gamma(a,1),Y\sim \Gamma(b,1) X∼Γ(a,1),Y∼Γ(b,1),且 X , Y X,Y X,Y 相互独立,则 Z = X X + Y ∼ β ( a , b ) Z=\frac{X}{X+Y}\sim \beta(a,b) Z=X+YX∼β(a,b)
χ 2 \chi^2 χ2 分布
χ 2 \chi^2 χ2 分布具有下列性质:
- 若 X ∼ χ 2 ( n ) X\sim \chi^2(n) X∼χ2(n),则 E ( X ) = n , D ( X ) = 2 n E(X)=n,D(X)=2n E(X)=n,D(X)=2n
- 可加性。若 X i ∼ χ 2 ( n i ) , i = 1 , . . . , k X_i \sim \chi^2(n_i),i=1,...,k Xi∼χ2(ni),i=1,...,k,且 X 1 , . . . , X k X_1,...,X_k X1,...,Xk 相互独立,则 X 1 + . . . + X n ∼ χ 2 ( n 1 + . . . + n k ) X_1+...+X_n\sim \chi^2(n_1+...+n_k) X1+...+Xn∼χ2(n1+...+nk)
t t t 分布
t t t 分布又称学生分布,随机变量 T T T 服从自由度为 n n n 的 t t t 分布记为 T ∼ t ( n ) T\sim t(n) T∼t(n)。
t t t 分布的概率密度关于 x = 0 x=0 x=0 对称,并且当 ∣ x ∣ → + ∞ |x|\to +\infty ∣x∣→+∞ 时单调下降地趋于 0,且当自由度 n → + ∞ n\to +\infty n→+∞ 时,自由度为 n n n 的 t t t 分布收敛于标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1)。
F F F 分布
随机变量 F F F 服从自由度为 ( n 1 , n 2 ) (n_1,n_2) (n1,n2) 的 F F F 分布记为 F ∼ F ( n 1 , n 2 ) F\sim F(n_1,n_2) F∼F(n1,n2)。
在上述定理的条件下,若 F ∼ F ( n 1 , n 2 ) F\sim F(n_1,n_2) F∼F(n1,n2),则 1 F ∼ F ( n 2 , n 1 ) \frac{1}{F} \sim F(n_2,n_1) F1∼F(n2,n1)。
分位数
由定义可知, y α = x 1 − α ; x p = y 1 − p y_\alpha=x_{1-\alpha}; x_p=y_{1-p} yα=x1−α;xp=y1−p。
- 由 N ( 0 , 1 ) N(0,1) N(0,1) 分布及 t t t 分布的对称性可知 u 1 − α = − u α , t 1 − α ( n ) = − t α ( n ) u_{1-\alpha}=-u_\alpha,t_{1-\alpha}(n)=-t_\alpha(n) u1−α=−uα,t1−α(n)=−tα(n)
- F α ( n 1 , n 2 ) = 1 F 1 − α ( n 2 , n 1 ) F_\alpha(n_1,n_2)=\frac{1}{F_{1-\alpha}(n_2,n_1)} Fα(n1,n2)=F1−α(n2,n1)1
参考文献
[1] 《应用数理统计》,施雨,西安交通大学出版社。