近年来,随着无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是在计算机视觉和图像处理领域,各种颠覆性的成果应运而生。
阅读全文点击:《如何熟练掌握MATLAB机器学习、深度学习在图像中的处理》
一、MATLAB 图像处理基础
1、图像的分类与表示方法
2、图像的常见格式及读写(彩色图像、灰度图像、二值图像等)
3、图像类型的转换
4、数字图像的基本运算
5、数字图像的几何变换(平移、镜像、缩放、旋转等)
6、数字图像的邻域和块操作
7、图像去噪与图像复原
8、图像边缘检测与图像分割
9、案例实践:基于手机摄像头的心率计算
二、BP神经网络及其在图像处理中的应用
1、人工智能基本概念辨析(回归拟合问题与分类识别问题;有监督(导师)学习与无监督(无导师)学习;训练集、验证集与测试集;过拟合与欠拟合)
2、BP神经网络的工作原理
3、数据预处理(归一化、异常值剔除、数据扩增技术等)
4、交叉验证与模型参数优化
5、模型评价与指标的选择(回归拟合问题 vs. 分类识别问题)
6、案例讲解:
(1)手写数字识别
(2)人脸朝向识别
三、卷积神经网络及其在图像处理中的应用
1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?深度学习与传统机器学习的本质区别是什么?)
2、卷积神经网络的基本原理(什么是卷积核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?CNN提取的特征是怎样的?)
3、LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系
4、MATLAB深度学习工具箱简介
5、预训练模型(Alexnet、Vgg-16/19、GoogLeNet、ResNet等)的下载与安装
6、案例讲解:
(1)CNN预训练模型实现物体识别
(2)利用卷积神经网络抽取抽象特征
(3)自定义卷积神经网络拓扑结构
四、迁移学习算法及其在图像处理中的应用
1.、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)
2、基于深度神经网络模型的迁移学习算法
3、案例讲解:猫狗大战(Dogs vs. Cats)
五、生成式对抗网络(GAN)及其在图像处理中的应用
1、生成式对抗网络GAN(什么是对抗生成网络?为什么需要对抗生成网络?对抗生成网络可以帮我们做什么?GAN给我们带来的启示)
2、GAN的基本原理及GAN进化史
3、案例讲解:GAN的Python代码实现(向日葵花图像的自动生成)
六、目标检测YOLO模型及其在图像处理中的应用
1、什么是目标检测?目标检测与目标识别的区别与联系
2、YOLO模型的工作原理
3、从YOLO v1到v5的进化之路
4、案例讲解:汽车的目标检测