老饼讲解机器学习

老饼讲解机器学习


目录

一. SVM的目标和思想   

1.1 SVM硬间隔模型的原始目的

1.2 SVM的直接目标

1.3 什么是支持向量

 二. SVM的支持平面的表示方式

2.1 支持面表示方式的初步思路

2.2 初步思路的缺陷与改进

2.3 支持面的最终表示方式

三. SVM模型表达式

3.1 SVM模型表达式

3.2 wx+b的意义

四. SVM模型损失函数

4.1 损失函数

4.2 损失函数解说


本文解说SVM的硬间隔损失函数的定义和思想,以及硬间隔损失函数的推导

一. SVM的目标和思想   


本节先大概了解SVM模型的主要思想和目标

1.1 SVM硬间隔模型的原始目的



1.2 SVM的直接目标



1.3 什么是支持向量



 二. SVM的支持平面的表示方式

  
本节说明SVM支持平面的表示方法,是后面讲述模型和损失函数的基础和前提

2.1 支持面表示方式的初步思路



2.2 初步思路的缺陷与改进




2.3 支持面的最终表示方式




   

三. SVM模型表达式


本节展示SVM模型的表达式,和讲解模型表达式的意义

3.1 SVM模型表达式



3.2 wx+b的意义



四. SVM模型损失函数

本节讲解SVM模型(硬间隔)的损失函数和解读损失函数的意义

4.1 损失函数



4.2 损失函数解说




 

笔者小故事



相关文章


老饼讲解|【逻辑回归】逻辑回归损失函数交叉熵形式的理解

老饼讲解|【原理】CART决策树算法实现流程

老饼讲解|【原理】逻辑回归原理

11-22 06:31