【题目】洛谷10月月赛R1 提高组
【题意】求n!在k进制下末尾0的个数,n<=1e18,k<=1e16。
【题解】考虑10进制末尾0要考虑2和5,推广到k进制则将k分解质因数。
每个质因数在n!中的数量,以2为例是n/2+n/4+n/8...这样统计。(含x个就被统计x次)
最后得到凑出的k的个数就可以得到末尾0的个数。
分解质因数复杂度O(√k),也使用pollard rho算法可以加速。
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <stdio.h> const int Times = ;
const int N = ; using namespace std;
typedef long long LL; LL ct, cnt;
LL fac[N], num[N]; LL gcd(LL a, LL b)
{
return b? gcd(b, a % b) : a;
} LL multi(LL a, LL b, LL m)
{
LL ans = ;
a %= m;
while(b)
{
if(b & )
{
ans = (ans + a) % m;
b--;
}
b >>= ;
a = (a + a) % m;
}
return ans;
} LL quick_mod(LL a, LL b, LL m)
{
LL ans = ;
a %= m;
while(b)
{
if(b & )
{
ans = multi(ans, a, m);
b--;
}
b >>= ;
a = multi(a, a, m);
}
return ans;
} bool Miller_Rabin(LL n)
{
if(n == ) return true;
if(n < || !(n & )) return false;
LL m = n - ;
int k = ;
while((m & ) == )
{
k++;
m >>= ;
}
for(int i=; i<Times; i++)
{
LL a = rand() % (n - ) + ;
LL x = quick_mod(a, m, n);
LL y = ;
for(int j=; j<k; j++)
{
y = multi(x, x, n);
if(y == && x != && x != n - ) return false;
x = y;
}
if(y != ) return false;
}
return true;
} LL pollard_rho(LL n, LL c)
{
LL i = , k = ;
LL x = rand() % (n - ) + ;
LL y = x;
while(true)
{
i++;
x = (multi(x, x, n) + c) % n;
LL d = gcd((y - x + n) % n, n);
if( < d && d < n) return d;
if(y == x) return n;
if(i == k)
{
y = x;
k <<= ;
}
}
} void find(LL n, int c)
{
if(n == ) return;
if(Miller_Rabin(n))
{
fac[ct++] = n;
return ;
}
LL p = n;
LL k = c;
while(p >= n) p = pollard_rho(p, c--);
find(p, k);
find(n / p, k);
} int main()
{
LL n,kind;
scanf("%lld%lld",&kind,&n);
ct = ;
find(n, );
sort(fac, fac + ct);
num[] = ;
int k = ;
for(int i=; i<ct; i++)
{
if(fac[i] == fac[i-])
++num[k-];
else
{
num[k] = ;
fac[k++] = fac[i];
}
}
cnt = k;
LL ans=(1ll<<);
for(int i=;i<cnt;i++){
LL as=,N=kind/fac[i];
while(N){
as+=N;
N/=fac[i];
}
as/=num[i];
ans=min(as,ans);
}
if(ans==1ll<<)ans=;
printf("%lld",ans);
return ;
}