泊松积分
最常用的两个:
∫ − ∞ ∞ e − t 2 d t = π \int_{-\infty}^{\infty}e^{-t^2}dt=\sqrt{\pi} ∫−∞∞e−t2dt=π
∫ 0 ∞ e − t 2 d t = π 2 \int_{0}^{\infty}e^{-t^2}dt=\frac{\sqrt{\pi}}{2} ∫0∞e−t2dt=2π
伽马函数
基本结论
Γ ( 1 ) = 1 , Γ ( 1 2 ) = π \Gamma(1)=1,\Gamma(\frac{1}{2})=\sqrt{\pi} Γ(1)=1,Γ(21)=π
性质
Γ ( α + 1 ) = α Γ ( α ) \Gamma(\alpha+1)=\alpha\Gamma(\alpha) Γ(α+1)=αΓ(α)
如: Γ ( 3 ) = Γ ( 2 + 1 ) = 2 Γ ( 2 ) = 2 ⋅ 1 ! = 2 \Gamma{(3)}=\Gamma(2+1)=2\Gamma{(2)}=2·1!=2 Γ(3)=Γ(2+1)=2Γ(2)=2⋅1!=2
Γ ( 3 2 ) = Γ ( 1 2 + 1 ) = 1 2 Γ ( 1 2 ) = π 2 \Gamma(\frac{3}{2})=\Gamma(\frac{1}{2}+1)=\frac{1}{2}\Gamma(\frac{1}{2})=\frac{\sqrt{\pi}}{2} Γ(23)=Γ(21+1)=21Γ(21)=2π
两种形式
- Γ ( n + 1 ) = ∫ 0 ∞ x n e − x d x = n ! \Gamma(n+1)=\int_{0}^{\infty}x^{n}e^{-x}dx=n! Γ(n+1)=∫0∞xne−xdx=n!
或 Γ ( α ) = ∫ 0 ∞ x α − 1 e − x d x = ( α − 1 ) ! \Gamma(\alpha)=\int_{0}^{\infty}x^{\alpha-1}e^{-x}dx=(\alpha-1)! Γ(α)=∫0∞xα−1e−xdx=(α−1)!
如: Γ ( 3 ) = Γ ( 2 + 1 ) = 2 ! = 2 \Gamma{(3)}=\Gamma(2+1)=2!=2 Γ(3)=Γ(2+1)=2!=2
- 令 x = t 2 x=t^2 x=t2有第二种形式:
Γ ( α ) = 2 ∫ 0 ∞ t 2 α − 1 e − t 2 d t \Gamma(\alpha)=2\int_{0}^{\infty}t^{2\alpha-1}e^{-t^2}dt Γ(α)=2∫0∞t2α−1e−t2dt
如: 2 ∫ 0 ∞ t 4 e − t 2 d t = 2 ∫ 0 ∞ t 2 ⋅ 5 2 − 1 e − t 2 d t = Γ ( 5 2 ) = Γ ( 3 2 + 1 ) = 3 2 ⋅ 1 2 ⋅ Γ ( 1 2 ) = 3 π 4 2\int_{0}^{\infty}t^{4}e^{-t^2}dt=2\int_{0}^{\infty}t^{2·\frac{5}{2}-1}e^{-t^2}dt=\Gamma{(\frac{5}{2})}=\Gamma(\frac{3}{2}+1)=\frac{3}{2}·\frac{1}{2}·\Gamma{(\frac{1}{2})}=\frac{3\sqrt{\pi}}{4} 2∫0∞t4e−t2dt=2∫0∞t2⋅25−1e−t2dt=Γ(25)=Γ(23+1)=23⋅21⋅Γ(21)=43π