1.全局解释器锁GIL
GIL其实就是一把互斥锁(牺牲了效率但是保证了数据的安全)。
线程是执行单位,但是不能直接运行,需要先拿到python解释器解释之后才能被cpu执行
同一时刻同一个进程内多个线程无法实现并行,但是可以实现并发
为什么要有GIL是因为它内部的垃圾回收机制不是线程安全的
垃圾回收机制也是一个任务,跟你的代码不是串行运行,如果是串行会明显有卡顿
这个垃圾回收到底是开进程还是开线程?肯定是线程,线程肯定也是一段代码,所以想运行也必须要拿到python解释器
假设能够并行,会出现什么情况?一个线程刚好要造一个a=1的绑定关系之前,这个垃圾线程来扫描,矛盾点就来了,谁成功都不对!
也就意味着在Cpython解释器上有一把GIL全局解释器锁
同一个进程下的多个线程不能实现并行但是能够实现并发,多个进程下的线程能够实现并行
1.python中的多线程到底有没有用?
单核情况下:四个任务
多核情况下:四个任务
计算密集型:一个任务算十秒,四个进程和四个线程,肯定是进程快
IO密集型:任务都是纯io情况下,线程开销比进程小,肯定是线程好
```python
# 计算密集型
from multiprocessing import Process
from threading import Thread
import os,time
def work():
res=0
for i in range(100000000):
res*=i if __name__ == '__main__':
l=[]
print(os.cpu_count()) # 本机为12核
start=time.time()
for i in range(12):
# p=Process(target=work) #耗时8s多
p=Thread(target=work) #耗时44s多
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print('run time is %s' %(stop-start)) # IO密集型
from multiprocessing import Process
from threading import Thread
import threading
import os,time
def work():
time.sleep(2) if __name__ == '__main__':
l=[]
print(os.cpu_count()) #本机为12核
start=time.time()
for i in range(400):
p=Process(target=work) #耗时12s多,大部分时间耗费在创建进程上
# p=Thread(target=work) #耗时2s多
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print('run time is %s' %(stop-start))
2.GIL与自定义互斥锁
不同的数据需要加不同的锁才能保证数据的安全,GIL锁只是对线程加锁,对数据并没有加锁的效果 ```python
from threading import Thread,Lock
import time mutex=Lock()
n=100
def task():
global n
with mutex:
temp=n
time.sleep(0.1)
n=temp-1 if __name__ == '__main__':
l=[]
for i in range(100):
t=Thread(target=task)
l.append(t)
t.start() for t in l:
t.join()
print(n)
# 对于修改不同的数据,需要加不同的锁进行处理
3.死锁与递归锁(了解)
自定义锁一次acquire必须对应一次release,不能连续acquire
递归锁可以连续的acquire,每acquire一次计数加一
from threading import Thread,Lock,RLock
import time # mutexA=Lock()
# mutexB=Lock()
mutexB=mutexA=RLock() class Mythead(Thread):
def run(self):
self.f1()
self.f2() def f1(self):
mutexA.acquire()
print('%s 抢到A锁' %self.name)
mutexB.acquire()
print('%s 抢到B锁' %self.name)
mutexB.release()
mutexA.release() def f2(self):
mutexB.acquire()
print('%s 抢到了B锁' %self.name)
time.sleep(2)
mutexA.acquire()
print('%s 抢到了A锁' %self.name)
mutexA.release()
mutexB.release() if __name__ == '__main__':
for i in range(100):
t=Mythead()
t.start()
4.信号量(了解)
自定义的互斥锁如果是一个厕所,那么信号量就相当于公共厕所,门口挂着多个厕所的钥匙。抢和释放跟互斥锁一致
from threading import Thread,Semaphore
import time
import random
sm = Semaphore(5) # 公共厕所里面有五个坑位,在厕所外面放了五把钥匙 def task(name):
sm.acquire()
print('%s正在蹲坑'%name)
# 模拟蹲坑耗时
time.sleep(random.randint(1,5))
sm.release() if __name__ == '__main__':
for i in range(20):
t = Thread(target=task,args=('伞兵%s号'%i,))
t.start()
5.Event事件
一些线程需要等待另外一些线程运行完毕才能运行,类似于发射信号一样
from threading import Thread,Event
import time
event = Event() # 造了一个红绿灯 def light():
print('红灯亮着的')
time.sleep(3)
print('绿灯亮了')
event.set() def car(name):
print('%s 车正在等红灯'%name)
event.wait()
print('%s 车加油门飙车走了'%name) if __name__ == '__main__':
t = Thread(target=light)
t.start() for i in range(10):
t = Thread(target=car,args=('%s'%i,))
t.start()
6.线程queue
同一个进程下的线程数据都是共享的为什么还要用queue?queue本身自带锁的功能,能够保证数据的安全
# 我们现在的q只能在本地使用,后面我们会学基于网络的q
import queue queue.Queue() #先进先出
q=queue.Queue(3)
q.put(1)
q.put(2)
q.put(3)
print(q.get())
print(q.get())
print(q.get()) queue.LifoQueue() #后进先出->堆栈
q=queue.LifoQueue(3)
q.put(1)
q.put(2)
q.put(3)
print(q.get())
print(q.get())
print(q.get()) queue.PriorityQueue() #优先级
q=queue.PriorityQueue(3) #优先级,优先级用数字表示,数字越小优先级越高
q.put((10,'a'))
q.put((-1,'b'))
q.put((100,'c'))
print(q.get())
print(q.get())
print(q.get())