1. 1x1的卷积核的作用

2. GoogLeNet中Inception Module的实现 

(刘二大人)PyTorch深度学习实践-卷积网络(Advance)-LMLPHP

(刘二大人)PyTorch深度学习实践-卷积网络(Advance)-LMLPHP

 2.1 Inception块的代码实现

import torch
import torch.nn.functional as F

class InceptinA(torch.nn.Module):
    def __init__(self,channels):
        super(InceptinA, self).__init__()
        self.branch_pool = torch.nn.Conv2d(channels,24,kernel_size=1)
        self.branch1x1 = torch.nn.Conv2d(channels,16,kernel_size=1)
        self.branch5x5_1 = torch.nn.Conv2d(channels,16,kernel_size=1)
        self.branch5x5_2 = torch.nn.Conv2d(16,24,kernel_size=5,padding=2)#使用了5x5的卷积核,为保证w和h不变,使用padding=2
        self.branch3x3_1 = torch.nn.Conv2d(channels,16,kernel_size=1)
        self.branch3x3_2 = torch.nn.Conv2d(16,24,kernel_size=3,padding=1)
        self.branch3x3_3 = torch.nn.Conv2d(24,24,kernel_size=3,padding=1)

    def forward(self,x):
        branch_pool = F.avg_pool2d(x,kernel_size=3,padding=1,stride=1) #本来默认stride就是1
        branch_pool = self.branch_pool(branch_pool)

        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_2(self.branch5x5_1(x))


        branch3x3 = self.branch3x3_3(self.branch3x3_2(self.branch3x3_1(x)))

        outputs = [branch_pool,branch1x1,branch5x5,branch3x3]
        return torch.cat(outputs,dim=1) #BxCxWxH,dim=1按照通道数进行拼接

2.2 使用模块构建卷积网络训练Minist数据集

(刘二大人)PyTorch深度学习实践-卷积网络(Advance)-LMLPHP

2.3  整体代码实现

import torch
from Inception import InceptinA
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from torchvision import datasets,transforms

#追踪日志
writer = SummaryWriter(log_dir='../LEDR')

#准备数据集
trans = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,),(0.3801,))])
train_set = datasets.MNIST(root='E:\learn_pytorch\LE',train=True,transform=trans,download=True)
test_set = datasets.MNIST(root='E:\learn_pytorch\LE',train=False,transform=trans,download=True)

#下载数据集
train_data = DataLoader(dataset=train_set,batch_size=64,shuffle=True)
test_data = DataLoader(dataset=test_set,batch_size=64,shuffle=False)

#构建模型
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv_1 = torch.nn.Conv2d(1,10,kernel_size=5)#输出变成 10x24x24
        self.conv_2 = torch.nn.Conv2d(88,20,kernel_size=5)# 输出变成 20x12x12
        self.mp = torch.nn.MaxPool2d(2)

        self.incept1 = InceptinA(channels=10)
        self.incept2 = InceptinA(channels=20)

        self.fc = torch.nn.Linear(1408,10)

    def forward(self,x):
        x = F.relu(self.mp(self.conv_1(x)))# 输出为 10x12x12
        x = self.incept1(x) #输出是88x12x12
        x = F.relu(self.mp(self.conv_2(x)))# 输出是 20x4x4
        x = self.incept2(x) #输出是 88x4x4
        x = x.view(-1,1408)
        x = self.fc(x)
        return x

#实例化模型
huihui = Net()

#定义损失函数和优化函数
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(params=huihui.parameters(),lr=0.01,momentum=0.5)

#开始训练
def train(epoch):
    run_loss = 0.0
    for batch_id , data in enumerate(train_data,0):
        inputs , targets = data
        outputs = huihui(inputs)
        loss = criterion(outputs, targets)

        #归零,反馈,更新
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        run_loss += loss.item()
        if batch_id % 300 == 299:
            print("[%d,%d] loss:%.3f" %(epoch+1,batch_id+1,run_loss/300))
            run_loss = 0.0

def test():
    total = 0
    correct = 0
    with torch.no_grad():
        for data in test_data:
            inputs , labels = data
            outputs = huihui(inputs)
            _,predict = torch.max(outputs,dim=1)
            total += labels.size(0)
            correct += (predict==labels).sum().item()
        writer.add_scalar("The Accuracy1",correct/total,epoch)
        print('[Accuracy] %d %%' % (100*correct/total))

if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

writer.close()



2.4 结果展示(正确率还是98%)

 2.5 图像展示

(刘二大人)PyTorch深度学习实践-卷积网络(Advance)-LMLPHP

 

11-03 09:41