Medium!
题目描述:
根据一棵树的前序遍历与中序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:
3
/ \
9 20
/ \
15 7
解题思路:
这道题要求用先序和中序遍历来建立二叉树,由于先序的顺序的第一个肯定是根,所以原二叉树的根节点可以知道,题目中给了一个很关键的条件就是树中没有相同元素,有了这个条件我们就可以在中序遍历中也定位出根节点的位置,并以根节点的位置将中序遍历拆分为左右两个部分,分别对其递归调用原函数。
C++解法一:
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
return buildTree(preorder, , preorder.size() - , inorder, , inorder.size() - );
}
TreeNode *buildTree(vector<int> &preorder, int pLeft, int pRight, vector<int> &inorder, int iLeft, int iRight) {
if (pLeft > pRight || iLeft > iRight) return NULL;
int i = ;
for (i = iLeft; i <= iRight; ++i) {
if (preorder[pLeft] == inorder[i]) break;
}
TreeNode *cur = new TreeNode(preorder[pLeft]);
cur->left = buildTree(preorder, pLeft + , pLeft + i - iLeft, inorder, iLeft, i - );
cur->right = buildTree(preorder, pLeft + i - iLeft + , pRight, inorder, i + , iRight);
return cur;
}
};
我们下面来看一个例子, 某一二叉树的中序和后序遍历分别为:
Preorder: 5 4 11 8 13 9
Inorder: 11 4 5 13 8 9
4 11 8 13 9 => 5
11 4 13 8 9 / \
4 11 13 9 => 5
11 13 9 / \
4 8
11 13 9 => 5
11 13 9 / \
4 8
/ / \
11 13 9
做完这道题后,大多人可能会有个疑问,怎么没有由先序和后序遍历建立二叉树呢,这是因为先序和后序遍历不能唯一的确定一个二叉树,比如下面五棵树:
1 preorder: 1 2 3
/ \ inorder: 2 1 3
2 3 postorder: 2 3 1
1 preorder: 1 2 3
/ inorder: 3 2 1
2 postorder: 3 2 1
/
3
1 preorder: 1 2 3
/ inorder: 2 3 1
2 postorder: 3 2 1
\
3
1 preorder: 1 2 3
\ inorder: 1 3 2
2 postorder: 3 2 1
/
3
1 preorder: 1 2 3
\ inorder: 1 2 3
2 postorder: 3 2 1
\
3
从上面我们可以看出,对于先序遍历都为1 2 3的五棵二叉树,它们的中序遍历都不相同,而它们的后序遍历却有相同的,所以只有和中序遍历一起才能唯一的确定一棵二叉树。