本文介绍了使用StanfordParser从解析的句子中获取类型化的依存关系的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
使用NLTK的StanfordParser,我可以解析这样的句子:
Using NLTK's StanfordParser, I can parse a sentence like this:
os.environ['STANFORD_PARSER'] = 'C:\jars'
os.environ['STANFORD_MODELS'] = 'C:\jars'
os.environ['JAVAHOME'] ='C:\ProgramData\Oracle\Java\javapath'
parser = stanford.StanfordParser(model_path="C:\jars\englishPCFG.ser.gz")
sentences = parser.parse(("bring me a red ball",))
for sentence in sentences:
sentence
结果是:
Tree('ROOT', [Tree('S', [Tree('VP', [Tree('VB', ['Bring']),
Tree('NP', [Tree('DT', ['a']), Tree('NN', ['red'])]), Tree('NP',
[Tree('NN', ['ball'])])]), Tree('.', ['.'])])])
除上面的图形外,如何使用斯坦福解析器获取类型化的依赖关系?像这样:
How can I use the Stanford parser to get typed dependencies in addition to the above graph? Something like:
- root(ROOT-0,带1)
- iobj(bring-1,me-2)
- det(ball-5,a-3)
- amod(球5,红色4)
- dobj(bring-1,ball-5)
推荐答案
NLTK的StanfordParser模块没有(当前)将树包装为Stanford Dependencies转换代码.您可以使用我的库 PyStanfordDependencies ,它包装了依赖转换器.
NLTK's StanfordParser module doesn't (currently) wrap the tree to Stanford Dependencies conversion code. You can use my library PyStanfordDependencies, which wraps the dependency converter.
如果问题代码段中的nltk_tree
是sentence
,则此方法有效:
If nltk_tree
is sentence
from the question's code snippet, then this works:
#!/usr/bin/python3
import StanfordDependencies
# Use str() to convert the NLTK tree to Penn Treebank format
penn_treebank_tree = str(nltk_tree)
sd = StanfordDependencies.get_instance(jar_filename='point to Stanford Parser JAR file')
converted_tree = sd.convert_tree(penn_treebank_tree)
# Print Typed Dependencies
for node in converted_tree:
print('{}({}-{},{}-{})'.format(
node.deprel,
converted_tree[node.head - 1].form if node.head != 0 else 'ROOT',
node.head,
node.form,
node.index))
这篇关于使用StanfordParser从解析的句子中获取类型化的依存关系的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!