本文介绍了错误处理斯卡拉名单的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

DEF trainBestSeller(事件:RDD [BuyEvent],N:智力,itemStringIntMap:BIMAP [字符串,INT]):地图[字符串,数组[(INT,INT)] = {
        VAL itemTemp =事件
        //地图从字符串整数索引项
        .flatMap {
            案例BuyEvent(用户,项目,类别,计数)如果itemStringIntMap.contains(项目)=>
                有些((itemStringIntMap(项目),类别),计数)
            案例_ =>无
        }
        //缓存以用于下一时间
        .cache()

  //每个分类顶视图:
    VAL bestSeller_Category:地图[字符串,数组[(INT,INT)] = itemTemp.reduceByKey(_ + _)
                                            .MAP(行=>(row._1._2,(row._1._1,row._2)))
                                            .groupByKey
                                            .MAP {情况(c,itemCounts)=>
                                              (C,itemCounts.toArray.sortBy(_._ 2)(Ordering.Int.reverse)。取(N))
                                            }
                                            .collectAsMap.toMap
    //所有类别= GT俯视图。 cateogory ALL
    VAL bestSeller_All:地图[字符串,数组[(INT,INT)] = itemTemp.reduceByKey(_ + _)
    .MAP(行=>(ALL,(row._1._1,row._2)))
    .groupByKey
    .MAP {
        情况(c,itemCounts)=>
            (C,itemCounts.toArray.sortBy(_._ 2)(Ordering.Int.reverse)。取(N))
    }
    .collectAsMap.toMap
    //合并2地图bestSeller_All和bestSeller_Category
    VAL畅销书= bestSeller_Category ++ bestSeller_All
    畅销书
}


解决方案

列表处理

您列表处理,似乎不错。我做了一个小复检

 高清主(参数:数组[字符串]):单位= {  案例类的jstring(X:智力)
  案例类CompactBuffer(X:智力,Y:智力)  VAL L =名单(的jstring(2435)的jstring(3464))
  VAL元组:(列表[的jstring],CompactBuffer)=(名单(的jstring(2435)的jstring(3464)),CompactBuffer(1,4))  VAL结果:列表[(的jstring,CompactBuffer)] = tuple._1.map((_,tuple._2))
  VAL结果2:列表[(的jstring,CompactBuffer)] = {
    VAL L = tuple._1
    VAL CB = tuple._2
    l.map(X =>(X,CB))
  }  的println(结果)
  的println(结果2)
}

结果是(预期)

 列表((的jstring(2435),CompactBuffer(1,4)),(的jstring(3464),CompactBuffer(1,4)))

进一步分析

需要分析,如果不解决您的问题:


  • 在哪里类型JStream(从org.json4s.JsonAST?)和CompactBuffer(星火我想)从?

  • 究竟是如何看起来code,创建?究竟是什么你在干什么?请提供code摘录!

def trainBestSeller(events: RDD[BuyEvent], n: Int, itemStringIntMap: BiMap[String, Int]): Map[String, Array[(Int, Int)]] = { val itemTemp = events // map item from string to integer index .flatMap { case BuyEvent(user, item, category, count) if itemStringIntMap.contains(item) => Some((itemStringIntMap(item),category),count) case _ => None } // cache to use for next times .cache()

    // top view with each category:
    val bestSeller_Category: Map[String, Array[(Int, Int)]] = itemTemp.reduceByKey(_ + _)
                                            .map(row => (row._1._2, (row._1._1, row._2)))
                                            .groupByKey
                                            .map { case (c, itemCounts) =>
                                              (c, itemCounts.toArray.sortBy(_._2)(Ordering.Int.reverse).take(n))
                                            }
                                            .collectAsMap.toMap




    // top view with all category => cateogory ALL
    val bestSeller_All: Map[String, Array[(Int, Int)]] = itemTemp.reduceByKey(_ + _)
    .map(row => ("ALL", (row._1._1, row._2)))
    .groupByKey
    .map { 
        case (c, itemCounts) =>
            (c, itemCounts.toArray.sortBy(_._2)(Ordering.Int.reverse).take(n))
    }
    .collectAsMap.toMap


    // merge 2 map bestSeller_All and bestSeller_Category
    val bestSeller = bestSeller_Category ++ bestSeller_All
    bestSeller
}
解决方案

List processing

Your list processing seems okay. I did a small recheck

def main( args: Array[String] ) : Unit = {

  case class JString(x: Int)
  case class CompactBuffer(x: Int, y: Int)

  val l = List( JString(2435), JString(3464))
  val tuple: (List[JString], CompactBuffer) = ( List( JString(2435), JString(3464)), CompactBuffer(1,4) )

  val result: List[(JString, CompactBuffer)] = tuple._1.map((_, tuple._2))
  val result2: List[(JString, CompactBuffer)] = {
    val l = tuple._1
    val cb = tuple._2
    l.map( x => (x,cb) )
  }

  println(result)
  println(result2)
}

Result is (as expected)

List((JString(2435),CompactBuffer(1,4)), (JString(3464),CompactBuffer(1,4)))

Further analysis

Analysis is required, if that does not solve your problem:

  • Where are types JStream (from org.json4s.JsonAST ?) and CompactBuffer ( Spark I suppose ) from?
  • How exactly looks the code, that creates pair ? What exactly are you doing? Please provide code excerpts!

这篇关于错误处理斯卡拉名单的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

11-01 18:09