2011–2012,  Northern Subregional   J. John’s Inversions-LMLPHP

考虑某一种状态,无论如何调整卡片位置,都不会减少逆序对数量,这就是我们要找的最优解。

显然在对于一个颜色的数字有序时,达到了上述状态。

于是,我们根据一个颜色的值排序后再计算逆序对就得到了答案。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
typedef pair<int,int> card; const int maxn=100000+1;
card c1[maxn],c2[maxn];
bool cmp(const card &a,const card &b)
{
return a.first<b.first|| (a.first==b.first&&a.second<b.second);
} bool cmp1(card a,card b)
{
return a.second<b.second;
}
void merges(vector<card> & cc,int l,int r,long long int &ans)
{
if(l==r)return;
if(l==r-1)
if(cmp1(cc[r],cc[l])){swap(cc[r],cc[l]);ans++;return ;}
else return ;
int mid=(l+r)/2;
vector<card>left,right;
for(int i=l;i<=mid;i++)left.push_back(cc[i]);
for(int i=mid+1;i<=r;i++)right.push_back(cc[i]);
merges(left,0,mid,ans);merges(right,0,r-mid-1,ans);
int l1=0,l2=0,len=0;
while(l1<left.size()&&l2<right.size())
{
if(cmp1(right[l2],left[l1])){cc[len++]=right[l2++];ans+=left.size()-l1;}
else{cc[len++]=left[l1++];}
}
while(l1<left.size())
{
cc[len++]=left[l1++];
}
while(l2<right.size())
{
cc[len++]=right[l2++];
}
} int main()
{freopen("john.in","r",stdin);
//freopen("john.out","w",stdout);
long long int ans1=0,ans2=0;
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%d%d",&c1[i].first,&c1[i].second);
c2[i].first=c1[i].second;
c2[i].second=c1[i].first;
}
sort(c1,c1+n,cmp);
sort(c2,c2+n,cmp);
vector<card> s1,s2;
for(int i=0;i<n;i++)
{
s1.push_back(c1[i]);
s2.push_back(c2[i]);
}
merges(s1,0,n-1,ans1);
merges(s2,0,n-1,ans2);
printf("%lld\n",min(ans1,ans2));
return 0;
}

  

05-22 13:03