本文介绍了无法在两个存在关于单身图书馆的情况下推论出KnownNat的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

  { - #LANGUAGE GADTs,StandaloneDeriving,RankNTypes,ScopedTypeVariables,
FlexibleInstances,KindSignatures,DataKinds,StandaloneDeriving# - }

导入Data.Singletons.Prelude
导入Data.Singletons.TypeLits

data Foo(a :: Nat)其中
Foo :: Foo a
派生显示

数据物件其中
Thing :: KnownNat a => ; Foo a - > Thing

导出实例Show Thing

afoo1 :: Foo 1
afoo1 = Foo

afoo2 :: Foo 2
afoo2 = Foo

athing :: Thing
athing = Thing afoo1

foolen :: forall n。 KnownNat n => Foo n - >整数
foolen foo =
唱歌(SNat :: Sing n) - > natVal(Proxy :: Proxy n)


minfoo :: forall a b c。 (Min a b_c,KnownNat c)=> Foo a - > Foo b - >整数
minfoo _ _ =
let c = case(SNat :: Sing c) - > natVal(Proxy :: Proxy c)
in natVal(Proxy :: Proxy c)

thinglen :: Thing - >整数
thinglen(Thing foo)= foolen foo

我可以用这个来得到最小值两件事

 小事::物品 - >事情 - >整数
minthing(Thing foo1)(Thing foo2)= min(foolen foo1)(foolen foo2)

但为什么我不能这样做呢?

  minthing':: Thing  - >事情 - >整数
minthing'(Thing foo1)(Thing foo2)= minfoo foo1 foo2

•无法推断(KnownNat
(Data.Singletons.Prelude.Ord.Case_1627967386
a
a1
(Data.Singletons.Prelude.Ord.Case_1627967254
a a1(GHC.TypeLits.CmpNat a a1))))

解决方案

您需要做一些定理证明来检查给定 KnownNat a KnownNat b ,您可以获得 KnownNat(Min ab)。一个可能的解决方案:

$ p $ import Data.Constraint

(...)

 定理:: forall a b。 (KnownNat a,KnownNat b)=> 
唱歌 - > Sing b - > Dict(KnownNat(Min a b))
theorem sa sb = case sCompare sa sb of
SLT - > Dict
SEQ - >字典
SGT - >字典

fooSing :: forall a。 KnownNat a => Foo a - >唱一个
fooSing _ =唱歌

minthing':: Thing - >事情 - >整数
minthing'(Thing foo1)(Thing foo2)=
case theorem(fooSing foo1)(fooSing foo2)of
Dict - > minfoo foo1 foo2


I was experimenting with the singletons library and I found a case that I don't understand.

{-# LANGUAGE GADTs, StandaloneDeriving, RankNTypes, ScopedTypeVariables,
FlexibleInstances, KindSignatures, DataKinds, StandaloneDeriving  #-}

import Data.Singletons.Prelude
import Data.Singletons.TypeLits

data Foo (a :: Nat) where
 Foo :: Foo a
  deriving Show

data Thing where
  Thing :: KnownNat a => Foo a -> Thing

deriving instance Show Thing

afoo1 :: Foo 1
afoo1 = Foo 

afoo2 :: Foo 2
afoo2 = Foo 

athing :: Thing
athing = Thing afoo1

foolen :: forall n. KnownNat n => Foo n -> Integer
foolen foo =
  case sing of (SNat :: Sing n) -> natVal (Proxy :: Proxy n)


minfoo :: forall a b c. (Min a b ~ c, KnownNat c) => Foo a -> Foo b -> Integer
minfoo _ _ = 
  let c = case sing of (SNat :: Sing c) -> natVal (Proxy :: Proxy c)
  in natVal (Proxy :: Proxy c)

thinglen :: Thing -> Integer
thinglen (Thing foo) = foolen foo 

I could use this to get the minimum of two Things

minthing :: Thing -> Thing -> Integer
minthing (Thing foo1) (Thing foo2) = min (foolen foo1) (foolen foo2)

But why can't I just do this?

minthing' :: Thing -> Thing -> Integer
minthing' (Thing foo1) (Thing foo2) = minfoo foo1 foo2

• Could not deduce (KnownNat
                      (Data.Singletons.Prelude.Ord.Case_1627967386
                         a
                         a1
                         (Data.Singletons.Prelude.Ord.Case_1627967254
                            a a1 (GHC.TypeLits.CmpNat a a1))))
解决方案

You need to do some theorem proving to check that given KnownNat a and KnownNat b you can get KnownNat (Min a b). A possible solution:

import Data.Constraint

(...)

theorem :: forall a b. (KnownNat a, KnownNat b) =>
           Sing a -> Sing b -> Dict (KnownNat (Min a b))
theorem sa sb = case sCompare sa sb of
  SLT -> Dict
  SEQ -> Dict
  SGT -> Dict

fooSing :: forall a. KnownNat a => Foo a -> Sing a
fooSing _ = sing

minthing' :: Thing -> Thing -> Integer
minthing' (Thing foo1) (Thing foo2) =
  case theorem (fooSing foo1) (fooSing foo2) of
    Dict -> minfoo foo1 foo2

这篇关于无法在两个存在关于单身图书馆的情况下推论出KnownNat的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-31 14:37