POJ2019

我们其实是很有必要把ST算法拓展到二维的,因为二维的RMQ问题还是不少的

int N,B,K;
int mm[];
int val[maxn][maxn];
int dpmin[maxn][maxn][][];
int dpmax[maxn][maxn][][];

这里的N是方阵的长宽,此处是正方形题目,然后mm是预处理出来的,方便计算指数

dpmin和dpmax就是预处理数组了

然后看一下开局预处理:

void initRMQ(int n,int m)
{
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
dpmin[i][j][][]=dpmax[i][j][][]=val[i][j];
for(int ii=;ii<=mm[n];ii++)
for(int jj=;jj<=mm[m];jj++)
if(ii+jj)
for(int i=;i+(<<ii)-<=n;i++)
for(int j=;j+(<<jj)-<=m;j++)
{
if(ii)
{
dpmin[i][j][ii][jj] = min(dpmin[i][j][ii-][jj],dpmin[i+(<<(ii-))][j][ii-][jj]);
dpmax[i][j][ii][jj] = max(dpmax[i][j][ii-][jj],dpmax[i+(<<(ii-))][j][ii-][jj]);
}
else
{
dpmin[i][j][ii][jj] = min(dpmin[i][j][ii][jj-],dpmin[i][j+(<<(jj-))][ii][jj-]);
dpmax[i][j][ii][jj] = max(dpmax[i][j][ii][jj-],dpmax[i][j+(<<(jj-))][ii][jj-]);
}
}
}

我们看预处理的时候还是比较明朗的,当然别忘了在主函数把mm初始化好

    mm[]=-;
for(int i=;i<=;i++)
mm[i]=((i&(i-))==)?mm[i-]+:mm[i-];

然后就是求最大值和最小值的函数了,这里,一定要仔细地去写,很容易写错:

int rmq1(int x1,int y1,int x2,int y2)  //max
{
int k1=mm[x2-x1+];
int k2=mm[y2-y1+];
x2=x2-(<<k1)+;
y2=y2-(<<k2)+;
return max(max(dpmax[x1][y1][k1][k2],dpmax[x1][y2][k1][k2]),max(dpmax[x2][y1][k1][k2],dpmax[x2][y2][k1][k2]));
}
int rmq2(int x1,int y1,int x2,int y2)
{
int k1=mm[x2-x1+];
int k2=mm[y2-y1+];
x2=x2-(<<k1)+;
y2=y2-(<<k2)+;
return min(min(dpmin[x1][y1][k1][k2],dpmin[x1][y2][k1][k2]),min(dpmin[x2][y1][k1][k2],dpmin[x2][y2][k1][k2]));
}

这个式子确实很长的

最后给出题目完整的实现:

 #include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=;
int N,B,K;
int mm[];
int val[maxn][maxn];
int dpmin[maxn][maxn][][];
int dpmax[maxn][maxn][][];
void initRMQ(int n,int m)
{
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
dpmin[i][j][][]=dpmax[i][j][][]=val[i][j];
for(int ii=;ii<=mm[n];ii++)
for(int jj=;jj<=mm[m];jj++)
if(ii+jj)
for(int i=;i+(<<ii)-<=n;i++)
for(int j=;j+(<<jj)-<=m;j++)
{
if(ii)
{
dpmin[i][j][ii][jj] = min(dpmin[i][j][ii-][jj],dpmin[i+(<<(ii-))][j][ii-][jj]);
dpmax[i][j][ii][jj] = max(dpmax[i][j][ii-][jj],dpmax[i+(<<(ii-))][j][ii-][jj]);
}
else
{
dpmin[i][j][ii][jj] = min(dpmin[i][j][ii][jj-],dpmin[i][j+(<<(jj-))][ii][jj-]);
dpmax[i][j][ii][jj] = max(dpmax[i][j][ii][jj-],dpmax[i][j+(<<(jj-))][ii][jj-]);
}
}
}
int rmq1(int x1,int y1,int x2,int y2) //max
{
int k1=mm[x2-x1+];
int k2=mm[y2-y1+];
x2=x2-(<<k1)+;
y2=y2-(<<k2)+;
return max(max(dpmax[x1][y1][k1][k2],dpmax[x1][y2][k1][k2]),max(dpmax[x2][y1][k1][k2],dpmax[x2][y2][k1][k2]));
}
int rmq2(int x1,int y1,int x2,int y2)
{
int k1=mm[x2-x1+];
int k2=mm[y2-y1+];
x2=x2-(<<k1)+;
y2=y2-(<<k2)+;
return min(min(dpmin[x1][y1][k1][k2],dpmin[x1][y2][k1][k2]),min(dpmin[x2][y1][k1][k2],dpmin[x2][y2][k1][k2]));
}
int main()
{
mm[]=-;
for(int i=;i<=;i++)
mm[i]=((i&(i-))==)?mm[i-]+:mm[i-];
while(scanf("%d%d%d",&N,&B,&K)==)
{
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
scanf("%d",&val[i][j]);
initRMQ(N,N);
int x,y;
while(K--)
{
scanf("%d%d",&x,&y);
printf("%d\n",rmq1(x,y,x+B-,y+B-)-rmq2(x,y,x+B-,y+B-));
}
}
return ;
}
05-24 05:56