问题描述
我有一个问题,我能够建模为寻找最大bicliques(完全二部图)的二分图。我知道勒布朗 - Kerbosch检测算法的最大派系,而在我看来,应该有一种方法来EX preSS一个biclique问题作为一个集团的。有没有人有一个解决方案,无论是形成biclique问题作为一个集团的,或作为一个可用的算法,直接检测bicliques?
I have a problem that I was able to model as finding maximal bicliques (complete bipartite graphs) in a bipartite graph. I am aware of the Bron–Kerbosch algorithm for detecting maximal cliques, and it seems to me that there should be a way to express a biclique problem as a clique one. Does anyone have a solution, either for forming a biclique problem as a clique one, or as an available algorithm for detecting bicliques directly?
推荐答案
有以下的的算法从的共识算法的代所有极大bicliques 的由Alexe等人的。
There's the following implementation of maximal biclique enumeration algorithm from Consensus algorithms for the generation of all maximal bicliques by Alexe et.al..
的理论运行时间为 O(BN ^ 3)
,其中 B
是最大的bicliques的数量。
The theoretical running time is O(Bn^3)
where B
is the number of maximal bicliques.
这篇关于查找最大Bicliques的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!