动态规划

1 概念

  动态规划算法是通过拆分问题,定义问题的状态与状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。在学习动态规划之前需要明确掌握几个重要概念。

  阶段:对于一个完整的问题过程,适当的切分为若干个相互联系的子问题,每次在求解一个子问题,则对应一个阶段,整个问题的求解转化为按照阶段次序去求解。

  状态:状态表示每个阶段开始时所处的客观条件,即在求解子问题时的已知条件。状态描述了研究的问题过程中的状况。

  决策:决策表示当求解过程处于某一阶段的某一状态时,可以根据当前条件作出不同的选择,从而确定下一个阶段的状态,这种选择称为决策。

  策略:由所有阶段的决策组成的决策序列称为全过程策略,简称策略。

  最优策略:在所有的策略中,找到代价最小,性能最优的策略,此策略称为最优策略。

  状态转移方程:状态转移方程是确定两个相邻阶段状态的演变过程,描述了状态之间是如何演变的。

2 使用场景

能采用动态规划求解的问题一般要具有 以下3 个性质:

  (1)最优化:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。子问题的局部最优将导致整个问题的全局最优。换句话说,就是问题的一个最优解中一定包含子问题的一个最优解。

  (2)无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关,与其他阶段的状态无关,特别是与未发生的阶段的状态无关。

   (3)重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)

3 算法流程

  (1)划分阶段:按照问题的时间或者空间特征将问题划分为若干个阶段。
  (2)确定状态以及状态变量:将问题的不同阶段时期的不同状态描述出来。
  (3)确定决策并写出状态转移方程:根据相邻两个阶段的各个状态之间的关系确定决策。
  (4)寻找边界条件:一般而言,状态转移方程是递推式,必须有一个递推的边界条件。
  (5)设计程序,解决问题

实战练习

下面的三道算法题都是来源于 LeetCode 上与股票买卖相关的问题 ,我们按照 动态规划 的算法流程来处理该类问题。

股票买卖这一类的问题,都是给定一个输入数组,里面的每个元素表示的是每天的股价,并且你只能持有一支股票(即你必须在再次购买前出售掉之前的股票),一般来说有下面几种问法:

  • 只能买卖一次
  • 可以买卖无数次
  • 可以买卖 k 次

问题就是需要你设计一个算法去获取最大的利润。

买卖股票的最佳时机

题目来源于 LeetCode 上第 121 号问题:买卖股票的最佳时机。题目难度为 Easy,目前通过率为 49.4% 。

题目描述

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。

注意你不能在买入股票前卖出股票。

示例 1:

示例 2:

题目解析

我们按照动态规划的思想来思考这道问题。

状态

买入(buy)卖出(sell) 这两种状态。

转移方程

对于买来说,买之后可以卖出(进入卖状态),也可以不再进行股票交易(保持买状态)。

对于卖来说,卖出股票后不在进行股票交易(还在卖状态)。

只有在手上的钱才算钱,手上的钱购买当天的股票后相当于亏损。也就是说当天买的话意味着损失-prices[i],当天卖的话意味着增加prices[i],当天卖出总的收益就是 buy+prices[i]

所以我们只要考虑当天买和之前买哪个收益更高,当天卖和之前卖哪个收益更高。

  • buy = max(buy, -price[i]) (注意:根据定义 buy 是负数)
  • sell = max(sell, prices[i] + buy)

边界

第一天 buy = -prices[0], sell = 0,最后返回 sell 即可。

代码实现

class Solution {
    public int maxProfit(int[] prices) {
        if(prices.length <= 1)
            return 0;

        int buy = -prices[0];
        int sell = 0;
        for(int i = 1; i < prices.length; i++) {
            buy = Math.max(buy, -prices[i]);
            sell = Math.max(sell, prices[i] + buy);
        }
        return sell;
    }
}

买卖股票的最佳时机 II

题目来源于 LeetCode 上第 122 号问题:买卖股票的最佳时机 II。题目难度为 Easy,目前通过率为 53.0% 。

题目描述

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

示例 2:

示例 3:

题目解析

状态

买入(buy)卖出(sell) 这两种状态。

转移方程

对比上题,这里可以有无限次的买入和卖出,也就是说 买入 状态之前可拥有 卖出 状态,所以买入的转移方程需要变化。

  • buy = max(buy, sell - price[i])
  • sell = max(sell, buy + prices[i] )

边界

第一天 buy = -prices[0], sell = 0,最后返回 sell 即可。

代码实现

class Solution {
    public int maxProfit(int[] prices) {
        if(prices.length <= 1)
            return 0;
        int buy = -prices[0], sell = 0;
        for(int i = 1; i < prices.length; i++) {
            sell = Math.max(sell, prices[i] + buy);
            buy = Math.max( buy,sell - prices[i]);
        }
        return sell;
    }
}

买卖股票的最佳时机 III

题目来源于 LeetCode 上第 123 号问题:买卖股票的最佳时机 III。题目难度为 Hard,目前通过率为 36.1% 。

题目描述

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

示例 2:

示例 3:

题目解析

这里限制了最多两笔交易。

状态

第一次买入(fstBuy)第一次卖出(fstSell)第二次买入(secBuy)第二次卖出(secSell) 这四种状态。

转移方程

这里可以有两次的买入和卖出,也就是说 买入 状态之前可拥有 卖出 状态,所以买入和卖出的转移方程需要变化。

  • fstBuy = max(fstBuy , -price[i])
  • fstSell = max(fstSell,fstBuy + prices[i] )
  • secBuy = max(secBuy ,fstSell -price[i]) (受第一次卖出状态的影响)
  • secSell = max(secSell ,secBuy + prices[i] )

边界

  • 一开始 fstBuy = -prices[0]
  • 买入后直接卖出,fstSell = 0
  • 买入后再卖出再买入,secBuy - prices[0]
  • 买入后再卖出再买入再卖出,secSell = 0

最后返回 secSell 。

代码实现

class Solution {
    public int maxProfit(int[] prices) {
        int fstBuy = Integer.MIN_VALUE, fstSell = 0;
        int secBuy = Integer.MIN_VALUE, secSell = 0;
        for(int i = 0; i < prices.length; i++) {
            fstBuy = Math.max(fstBuy, -prices[i]);
            fstSell = Math.max(fstSell, fstBuy + prices[i]);
            secBuy = Math.max(secBuy, fstSell -  prices[i]);
            secSell = Math.max(secSell, secBuy +  prices[i]);
        }
        return secSell;

    }
}
06-19 04:10