原题链接:http://codevs.cn/problem/1033/

题目描述 Description

在一块梯形田地上,一群蚯蚓在做收集食物游戏。蚯蚓们把梯形田地上的食物堆积整理如下:

a(1,1)  a(1,2)…a(1,m)

a(2,1)  a(2,2)  a(2,3)…a(2,m)  a(2,m+1)

a(3,1)  a (3,2)  a(3,3)…a(3,m+1)  a(3,m+2)

……

a(n,1)   a(n,2)   a(n,3)…           a(n,m+n-1)

它们把食物分成n行,第1行有m堆的食物,每堆的食物量分别是a(1,1),a(1,2),…,a(1,m);

第2行有m+1堆食物,每堆的食物量分别是a(2,1),a(2,2),…,  a(2,m+1);以下依次有m+2堆、m+3堆、…m+n-1堆食物。

现在蚯蚓们选择了k条蚯蚓来测试它们的合作能力(1≤ k ≤m)。测试法如下:第1条蚯蚓从第1行选择一堆食物,然后往左下或右下爬,并收集1堆食物,例如从a(1,2)只能爬向a(2,2) 或a(2,3),而不能爬向其它地方。接下来再爬向下一行收集一堆食物,直到第n行收集一堆食物。第1条蚯蚓所收集到的食物量是它在每一行所收集的食物量之和;第2条蚯蚓也从第1行爬到第n行,每行收集一堆食物,爬的方法与第1条蚯蚓相类似,但不能碰到第1条蚯蚓所爬的轨迹;一般地,第i
条蚯蚓从第1行爬到第 n行,每行收集一堆食物,爬的方法与第1条蚯蚓类似,但不能碰到前 I-1 条蚯蚓所爬的轨迹。这k条蚯蚓应该如何合作,才能使它们所收集到的食物总量最多?收集到的食物总量可代表这k条蚯蚓的合作水平。

  • Ø编程任务:

给定上述梯形m、n和k的值(1≤k≤m≤30;1≤n≤30)以及梯形中每堆食物的量(小于10的非整数),编程计算这k条蚯蚓所能收集到的食物的最多总量。

输入描述 Input Description

输入数据由文件名为INPUT1.*的文本文件提供,共有n+1行。每行的两个数据之间用一个空格隔开。

●第1行是n、m和k的值。

  • 接下来的n行依次是梯形的每一行的食物量a(i,1),a(i,2),…,a(i,m+i-1),i=1,2,…,n。
输出描述 Output Description

程序运行结束时,在屏幕上输出k蚯蚓条所能收集到的食物的最多总量。

样例输入 Sample Input

3    2   2

1   2

5   0   2

1   10  0  6

样例输出 Sample Output

26

很裸的最小费用流。每个食物拆成两个点,之间连一条权值为-a[i][j](由于是求最大值,所以要取相反数),容量为1的边。食物与食物之连接一条权值为0,容量为1的边。第一排的食物与源点连一条权值为0,容量为1的边。每个食物都与汇点连一条权值为0,容量为1的边。最后求一个流量为k的最小费用流。

详见代码:

#include<iostream>
#include<cstring>
#include<vector>
#include<queue>
#include<string>
#include<algorithm>
#define MAX_N 300
#define MAX_V 5200
#define INF 10086
using namespace std; int n,m,k; int a[MAX_N][MAX_N]; struct edge{int to,cap,cost,rev;}; int V=0;
vector<edge> G[MAX_V];
int dist[MAX_V];
int prevv[MAX_V],preve[MAX_V]; void add_edge(int from,int to,int cap,int cost)
{
G[from].push_back((edge){to,cap,cost,G[to].size()});
G[to].push_back((edge){from,0,-cost,G[from].size()-1});
}
char cc;
int min_cost_flow(int s,int t,int f)
{
int res=0;
while(f>0)
{
fill(dist,dist+V,INF);
dist[s]=0;
bool update=1;
while(update)
{
update=0;
for(int v=0;v<V;v++)
{
if(dist[v]==INF)continue;
for(int i=0;i<G[v].size();i++)
{
edge &e=G[v][i];
if(e.cap>0&&dist[e.to]>dist[v]+e.cost)
{
//cout<<"*"<<endl;
dist[e.to]=dist[v]+e.cost;
prevv[e.to]=v;
preve[e.to]=i;
update=1;
}
}
}
}
if(dist[t]==INF)
return -1; int d=f;
for(int v=t;v!=s;v=prevv[v])
d=min(d,G[prevv[v]][preve[v]].cap);
f-=d;
res+=d*dist[t];
for(int v=t;v!=s;v=prevv[v])
{
edge &e=G[prevv[v]][preve[v]];
e.cap-=d;
G[v][e.rev].cap+=d;
}
}
return res;
} int main()
{
cin>>n>>m>>k;
for(int i=0;i<n;i++)
for(int j=0;j<m+i;j++)
cin>>a[i][j];
int s=n*(2*m+n-1),t=n*(2*m+n-1)+1;
for(int i=0;i<n;i++)
for(int j=0;j<m+i;j++)
{
if(i==0)add_edge(s,V,1,0);
add_edge(V,V+1,1,-a[i][j]);V++;
add_edge(V,t,1,0);
if(i!=n-1)add_edge(V,2*(m+i)+V+1,1,0);
if(i!=n-1)add_edge(V,2*(m+i)-1+V,1,0);
V++;
}
V+=2;
cout<<-min_cost_flow(s,t,k)<<endl;
return 0;
}

05-11 20:45