题目描述 Description

在一块梯形田地上,一群蚯蚓在做收集食物游戏。蚯蚓们把梯形田地上的食物堆积整理如下:

a(1,1)  a(1,2)…a(1,m)

a(2,1)  a(2,2)  a(2,3)…a(2,m)  a(2,m+1)

a(3,1)  a (3,2)  a(3,3)…a(3,m+1)  a(3,m+2)

……

a(n,1)   a(n,2)   a(n,3)…           a(n,m+n-1)

它们把食物分成n行,第1行有m堆的食物,每堆的食物量分别是a(1,1),a(1,2),…,a(1,m);

第2行有m+1堆食物,每堆的食物量分别是a(2,1),a(2,2),…,  a(2,m+1);以下依次有m+2堆、m+3堆、…m+n-1堆食物。

现在蚯蚓们选择了k条蚯蚓来测试它们的合作能力(1≤ k ≤m)。测试法如下:第1条蚯蚓从第1行选择一堆食物,然后往左下或右下爬,并收集1堆食物,例如从a(1,2)只能爬向a(2,2) 或a(2,3),而不能爬向其它地方。接下来再爬向下一行收集一堆食物,直到第n行收集一堆食物。第1条蚯蚓所收集到的食物量是它在每一行所收集的食物量之和;第2条蚯蚓也从第1行爬到第n行,每行收集一堆食物,爬的方法与第1条蚯蚓相类似,但不能碰到第1条蚯蚓所爬的轨迹;一般地,第i 条蚯蚓从第1行爬到第 n行,每行收集一堆食物,爬的方法与第1条蚯蚓类似,但不能碰到前 I-1 条蚯蚓所爬的轨迹。这k条蚯蚓应该如何合作,才能使它们所收集到的食物总量最多?收集到的食物总量可代表这k条蚯蚓的合作水平。

  • Ø编程任务:

给定上述梯形m、n和k的值(1≤k≤m≤30;1≤n≤30)以及梯形中每堆食物的量(小于10的非整数),编程计算这k条蚯蚓所能收集到的食物的最多总量。

输入描述 Input Description

输入数据由文件名为INPUT1.*的文本文件提供,共有n+1行。每行的两个数据之间用一个空格隔开。

●第1行是n、m和k的值。

  • 接下来的n行依次是梯形的每一行的食物量a(i,1),a(i,2),…,a(i,m+i-1),i=1,2,…,n。
输出描述 Output Description

程序运行结束时,在屏幕上输出k蚯蚓条所能收集到的食物的最多总量。

样例输入 Sample Input

3    2   2

1   2

5   0   2

1   10  0  6

样例输出 Sample Output

26

数据范围及提示 Data Size & Hint

hzw学长的模板很好用

 #include<iostream>
#include<cstring>
#include<queue>
using namespace std; const int INF=0x7fffffff;
const int X=;
const int N=;
const int M=; struct Edge
{
int from,to,v,c,next;
}E[M];
int node=;
int head[N],from[N],dis[N],vis[N]; int n,m,k,ans,tot; void ins(int from,int to,int v,int c)
{
node++;
E[node]=(Edge){from,to,v,c,head[from]};
head[from]=node;
} void insert(int from,int to,int v,int c)
{
ins(from,to,v,c);ins(to,from,,-c);
} bool spfa()
{
queue<int> Q;
memset(dis,-,sizeof(dis));
Q.push();dis[]=;vis[]=;
while(!Q.empty())
{
int q=Q.front();Q.pop();
for(int i=head[q];i;i=E[i].next)
if(E[i].v>&&dis[q]+E[i].c>dis[E[i].to])
{
dis[E[i].to]=dis[q]+E[i].c;
from[E[i].to]=i;
if(!vis[E[i].to])
{
Q.push(E[i].to);
vis[E[i].to]=;
}
}
vis[q]=;
}
return dis[N-]!=-;
} void mcf()
{
int x=INF;
for(int i=from[N-];i;i=from[E[i].from])
x=min(E[i].v,x);
for(int i=from[N-];i;i=from[E[i].from])
{
ans+=x*E[i].c;
E[i].v-=x;E[i^].v+=x;
}
} int main()
{
cin>>n>>m>>k;
int x;
for(int i=;i<=n;i++)
for(int j=;j<=m+i-;j++)
{
cin>>x;
tot++;
insert(tot,tot+X,,x);
if(i<n)
{
insert(tot+X,tot+i+m,,);
insert(tot+X,tot+i+m-,,);
}
}
for(int i=;i<=m;i++) insert(,i,,);
for(int i=;i<=n+m-;i++) insert(tot-i+X+,N-,,);
for(int i=;i<=k;i++)
if(spfa())
mcf();
else break;
cout<<ans;
return ;
}
05-11 20:45