本文介绍了如何为nls函数找到好的开始值?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我不明白为什么我无法使用这些数据的nls函数。
我尝试了很多不同的起始值,并且总是有相同的错误。



以下是我一直在做的事情:

  expFct2 = function(x,a,b,c)
{
a *(1-exp(-x / b ))+ c
}
vec_x vec_y dt < - data.frame(vec_x = vec_x,vec_y = vec_y)
ggplot(data = dt,aes(x = vec_x,y = vec_y))+ geom_point()+
geom_smooth(data = dt ,方法=nls,formula = y_expFct2(x,a,b,c),
se = F,start = list(a = 1,b = 75,c = -5)

我总是遇到这样的错误:

 方法(公式,data = data,weights = weight,...)中的错误:
奇异梯度

$这可以写成两个线性参数( .lin1 .lin2 )和一个非线性参数( b ),如下所示:

<$ p $ (1-exp(-x / b))+ c
=(a + c) - a * exp(-x / b)
= .lin1 + .lin2 * exp(-x / b)

其中 .lin1 = a + c .lin2 = -a (所以 a = - .lin2 c = .lin1 + .lin2 )这让我们可以使用plinear,它只需要指定单个非线性参数的起始值(消除了如何设置其他参数的起始值的问题),并且尽管起始值 b = 75 远不及解决方案:

  nls (y_cbind(1,exp(-x / b)),start = list(b = 75),alg =plinear)

下面是我们从 .lin2 的大小中看到问题严重缩放的结果:

 > x<  -  c(77.87,87.76,68.6,66.29)
> y< - c(1,1,0.8,0.6)
> nls(y_cbind(1,exp(-x / b)),start = list(b = 75),alg =plinear)
非线性回归模型
模型:y〜cbind(1 ,exp(-x / b))
data:parent.frame()
b .lin1 .lin2
3.351e + 00 1.006e + 00 -1.589e + 08
residual平方和:7.909e-05

收敛的迭代次数:9
实现的收敛容限:9.887e-07
> R.version.string
[1]R version 2.14.2 Patched(2012-02-29 r58660)
> win.version()
[1]Windows Vista(build 6002)Service Pack 2




I don't understand why I can't have a nls function for these data.I have tried with a lot of different start values and I have always the same error.

Here is what I have been doing:

expFct2 = function (x, a, b,c)
{
  a*(1-exp(-x/b)) + c  
}
vec_x <- c(77.87,87.76,68.6,66.29)
vec_y <- c(1,1,0.8,0.6)
dt <- data.frame(vec_x=vec_x,vec_y=vec_y)
ggplot(data = dt,aes(x = vec_x, y = vec_y)) +  geom_point() + 
     geom_smooth(data=dt, method="nls", formula=y~expFct2(x, a, b, c),
       se=F, start=list(a=1, b=75, c=-5)

I have always this error:

Error in method(formula, data = data, weights = weight, ...) : 
  singular gradient
解决方案

This can be written with two linear parameters (.lin1 and .lin2) and one nonlinear parameter (b) like this:

a*(1-exp(-x/b)) + c  
= (a+c) - a * exp(-x/b)
= .lin1 + .lin2 * exp(-x/b)

where .lin1 = a+c and .lin2 = -a (so a = - .lin2 and c = .lin1 + .lin2) This lets us use "plinear" which only requires specification of a starting value for the single nonlinear parameter (eliminating the problem of how to set the starting values for the other parameters) and which converges despite the starting value of b=75 being far from that of the solution:

nls(y ~ cbind(1, exp(-x/b)), start = list(b = 75), alg = "plinear")

Here is the result of a run from which we can see from the size of .lin2 that the problem is badly scaled:

> x <- c(77.87,87.76,68.6,66.29)
> y <- c(1,1,0.8,0.6)
> nls(y ~ cbind(1, exp(-x/b)), start = list(b = 75), alg = "plinear")
Nonlinear regression model
  model:  y ~ cbind(1, exp(-x/b)) 
   data:  parent.frame() 
         b      .lin1      .lin2 
 3.351e+00  1.006e+00 -1.589e+08 
 residual sum-of-squares: 7.909e-05

Number of iterations to convergence: 9 
Achieved convergence tolerance: 9.887e-07 
> R.version.string
[1] "R version 2.14.2 Patched (2012-02-29 r58660)"
> win.version()
[1] "Windows Vista (build 6002) Service Pack 2"

EDIT: added sample run and comment on scaling.

这篇关于如何为nls函数找到好的开始值?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-28 09:06