138-子数组之和
方法一(O(n^2))
利用两个for循环,每次取出一个元素依次与后面的元素相加,时间复杂度是O(n^2)
code
class Solution {
public:
/**
* @param nums: A list of integers
* @return: A list of integers includes the index of the first number
* and the index of the last number
*/
vector<int> subarraySum(vector<int> nums){
// write your code here
int size = nums.size(), sum = 0;
if(size <= 0) {
return vector<int>();
}
vector<int> result;
for(int i=0; i<size; i++) {
sum = nums[i];
if(sum == 0){
result.push_back(i);
result.push_back(i);
return result;
}
for(int j=i+1; j<size; j++) {
sum += nums[j];
if(sum == 0) {
result.push_back(i);
result.push_back(j);
return result;
}
}
}
return result;
}
};
方法二(O(n))
利用一个 map 记录从第一个元素开始到当前元素之和 与 当前元素的下标 的对应关系,若有一段子数组和为0,那么势必出现同一和对应2个下标,此时就找到了和为零的连续序列,时间复杂度是O(n)
code
class Solution {
public:
/**
* @param nums: A list of integers
* @return: A list of integers includes the index of the first number
* and the index of the last number
*/
vector<int> subarraySum(vector<int> nums){
// write your code here
int size = nums.size(), sum = 0;
if(size <= 0) {
return vector<int>();
}
vector<int> result;
map<int, int> subSum;
subSum[0] = -1;
for(int i=0; i<size; i++) {
sum += nums[i];
if(subSum.count(sum)) {
result.push_back(subSum[sum] + 1);
result.push_back(i);
return result;
}
subSum[sum] = i;
}
return result;
}
};