用(r-l+2)维向量f[l,r]表示区间[l,r]内选i个数(0<=i<=r-l+1)相乘的所有方案之和,可以发现f[l,r]=f[l,m]*f[m+1,r],题目模数100003较小,每次卷积后答案上界大约为1e16,用ntt在两个1e9左右的模数下计算后CRT合并即可,复杂度为O(nlogn),要注意常数优化
#include<cstdio>
#include<cstring>
#include<algorithm>
typedef long long i64;
int _(){
int x=,f=,c=getchar();
while(c<)c=='-'&&(f=-),c=getchar();
while(c>)x=x*+c-,c=getchar();
return x*f;
}
int pow(int a,int n,int p){
int v=;
for(;n;n>>=){
if(n&)v=i64(v)*a%p;
a=i64(a)*a%p;
}
return v;
}
i64 mul(i64 a,i64 b,i64 p){
i64 s=;
a%=p;b%=p;
while(b){
if(b&)(s+=a)%=p;
(a<<=)%=p;
b>>=;
}
return s;
}
int N,X,r[];
template<const int p,const int g>
void ntt(int*a,int t){
for(int i=;i<N;++i)if(i>r[i])std::swap(a[i],a[r[i]]);
for(int i=;i<N;i<<=){
int w=pow(g,(t*(p-)/(i*)+p-),p);
for(int j=;j<N;j+=i<<){
int e=,*b=a+j,*c=b+i;
for(int k=;k<i;++k,e=i64(e)*w%p){
int x=b[k],y=c[k]*i64(e)%p;
b[k]=(x+y)%p;
c[k]=(x-y+p)%p;
}
}
}
if(t==-){
i64 I=pow(N,p-,p);
for(int i=;i<N;++i)a[i]=a[i]*I%p;
}
}
int n,q,v0[],mem[*+],*mp=mem,vs[][+];
const int p1=,g1=,p2=,g2=;
const i64 m1=i64(p1)*pow(p1,p2-,p2),m2=i64(p2)*pow(p2,p1-,p1),ps=i64(p1)*p2;
int*calc(int L,int R){
int*pos=mp;mp+=R-L+;
if(L==R){
*pos=v0[L];
return pos;
}
int M=L+R>>;
int*lp=calc(L,M)-;
int*rp=calc(M+,R)-;
for(N=,X=;N<R-L+;N<<=,++X);
if(R-L+<=){
for(int i=;i<;++i)memset(vs[i],,N*sizeof(int)),vs[i][]=;
for(int i=;i<=M-L+;++i)vs[][i]=lp[i];
for(int i=;i<=R-M;++i)vs[][i]=rp[i];
for(int i=;i<=R-L+;++i){
for(int j=;j<=i;++j)pos[i-]=(pos[i-]+i64(vs[][j])*vs[][i-j])%;
}
return pos;
}
for(int i=;i<N;++i)r[i]=r[i>>]>>|(i&)<<X;
for(int i=;i<;++i)memset(vs[i],,N*sizeof(int)),vs[i][]=;
for(int i=;i<=M-L+;++i)vs[][i]=vs[][i]=lp[i];
for(int i=;i<=R-M;++i)vs[][i]=vs[][i]=rp[i];
ntt<p1,g1>(vs[],);
ntt<p1,g1>(vs[],);
ntt<p2,g2>(vs[],);
ntt<p2,g2>(vs[],);
for(int i=;i<N;++i)vs[][i]=i64(vs[][i])*vs[][i]%p1;
for(int i=;i<N;++i)vs[][i]=i64(vs[][i])*vs[][i]%p2;
ntt<p1,g1>(vs[],-);
ntt<p2,g2>(vs[],-);
for(int i=;i<=R-L+;++i)pos[i-]=(mul(m2,vs[][i],ps)+mul(m1,vs[][i],ps))%ps%;
return pos;
}
int main(){
n=_();q=_();
for(int i=;i<=n;++i)v0[i]=_();
int*ans=calc(,n)-;
while(q--)printf("%d\n",ans[_()]);
return ;
}