tensorflow 预训练模型列表

https://github.com/tensorflow/models/tree/master/research/slim

Pre-trained Models

Neural nets work best when they have many parameters, making them powerful function approximators. However, this means they must be trained on very large datasets. Because training models from scratch can be a very computationally intensive process requiring days or even weeks, we provide various pre-trained models, as listed below. These CNNs have been trained on the ILSVRC-2012-CLS image classification dataset.

In the table below, we list each model, the corresponding TensorFlow model file, the link to the model checkpoint, and the top 1 and top 5 accuracy (on the imagenet test set). Note that the VGG and ResNet V1 parameters have been converted from their original caffe formats (here and here), whereas the Inception and ResNet V2 parameters have been trained internally at Google. Also be aware that these accuracies were computed by evaluating using a single image crop. Some academic papers report higher accuracy by using multiple crops at multiple scales.

Model

TF-Slim File

Checkpoint

Top-1 Accuracy

Top-5 Accuracy

Inception V1

Code

inception_v1_2016_08_28.tar.gz

69.8

89.6

Inception V2

Code

inception_v2_2016_08_28.tar.gz

73.9

91.8

Inception V3

Code

inception_v3_2016_08_28.tar.gz

78.0

93.9

Inception V4

Code

inception_v4_2016_09_09.tar.gz

80.2

95.2

Inception-ResNet-v2

Code

inception_resnet_v2_2016_08_30.tar.gz

80.4

95.3

ResNet V1 50

Code

resnet_v1_50_2016_08_28.tar.gz

75.2

92.2

ResNet V1 101

Code

resnet_v1_101_2016_08_28.tar.gz

76.4

92.9

ResNet V1 152

Code

resnet_v1_152_2016_08_28.tar.gz

76.8

93.2

ResNet V2 50^

Code

resnet_v2_50_2017_04_14.tar.gz

75.6

92.8

ResNet V2 101^

Code

resnet_v2_101_2017_04_14.tar.gz

77.0

93.7

ResNet V2 152^

Code

resnet_v2_152_2017_04_14.tar.gz

77.8

94.1

ResNet V2 200

Code

TBA

79.9*

95.2*

VGG 16

Code

vgg_16_2016_08_28.tar.gz

71.5

89.8

VGG 19

Code

vgg_19_2016_08_28.tar.gz

71.1

89.8

MobileNet_v1_1.0_224

Code

mobilenet_v1_1.0_224.tgz

70.9

89.9

MobileNet_v1_0.50_160

Code

mobilenet_v1_0.50_160.tgz

59.1

81.9

MobileNet_v1_0.25_128

Code

mobilenet_v1_0.25_128.tgz

41.5

66.3

MobileNet_v2_1.4_224^*

Code

mobilenet_v2_1.4_224.tgz

74.9

92.5

MobileNet_v2_1.0_224^*

Code

mobilenet_v2_1.0_224.tgz

71.9

91.0

NASNet-A_Mobile_224#

Code

nasnet-a_mobile_04_10_2017.tar.gz

74.0

91.6

NASNet-A_Large_331#

Code

nasnet-a_large_04_10_2017.tar.gz

82.7

96.2

PNASNet-5_Large_331

Code

pnasnet-5_large_2017_12_13.tar.gz

82.9

96.2

PNASNet-5_Mobile_224

Code

pnasnet-5_mobile_2017_12_13.tar.gz

74.2

91.9

04-14 11:24