一、简介

Hive 是一个构建在 Hadoop 之上的数据仓库,它可以将结构化的数据文件映射成表,并提供类 SQL 查询功能,用于查询的 SQL 语句会被转化为 MapReduce 作业,然后提交到 Hadoop 上运行。

特点

  1. 简单、容易上手 (提供了类似 sql 的查询语言 hql),使得精通 sql 但是不了解 Java 编程的人也能很好地进行大数据分析;
  2. 灵活性高,可以自定义用户函数 (UDF) 和存储格式;
  3. 为超大的数据集设计的计算和存储能力,集群扩展容易;
  4. 统一的元数据管理,可与 presto/impala/sparksql 等共享数据;
  5. 执行延迟高,不适合做数据的实时处理,但适合做海量数据的离线处理。

二、Hive的体系架构

Hive 系列(一)—— Hive 简介及核心概念-LMLPHP

2.1 command-line shell & thrift/jdbc

可以用 command-line shell 和 thrift/jdbc 两种方式来操作数据:

  • command-line shell:通过 hive 命令行的的方式来操作数据;
  • thrift/jdbc:通过 thrift 协议按照标准的 JDBC 的方式操作数据。

2.2 Metastore

在 Hive 中,表名、表结构、字段名、字段类型、表的分隔符等统一被称为元数据。所有的元数据默认存储在 Hive 内置的 derby 数据库中,但由于 derby 只能有一个实例,也就是说不能有多个命令行客户端同时访问,所以在实际生产环境中,通常使用 MySQL 代替 derby。

Hive 进行的是统一的元数据管理,就是说你在 Hive 上创建了一张表,然后在 presto/impala/sparksql 中都是可以直接使用的,它们会从 Metastore 中获取统一的元数据信息,同样的你在 presto/impala/sparksql 中创建一张表,在 Hive 中也可以直接使用。

2.3 HQL的执行流程

Hive 在执行一条 HQL 的时候,会经过以下步骤:

  1. 语法解析:Antlr 定义 SQL 的语法规则,完成 SQL 词法,语法解析,将 SQL 转化为抽象 语法树 AST Tree;
  2. 语义解析:遍历 AST Tree,抽象出查询的基本组成单元 QueryBlock;
  3. 生成逻辑执行计划:遍历 QueryBlock,翻译为执行操作树 OperatorTree;
  4. 优化逻辑执行计划:逻辑层优化器进行 OperatorTree 变换,合并不必要的 ReduceSinkOperator,减少 shuffle 数据量;
  5. 生成物理执行计划:遍历 OperatorTree,翻译为 MapReduce 任务;
  6. 优化物理执行计划:物理层优化器进行 MapReduce 任务的变换,生成最终的执行计划。

三、数据类型

3.1 基本数据类型

Hive 表中的列支持以下基本数据类型:

3.2 隐式转换

Hive 中基本数据类型遵循以下的层次结构,按照这个层次结构,子类型到祖先类型允许隐式转换。例如 INT 类型的数据允许隐式转换为 BIGINT 类型。额外注意的是:按照类型层次结构允许将 STRING 类型隐式转换为 DOUBLE 类型。

Hive 系列(一)—— Hive 简介及核心概念-LMLPHP

3.3 复杂类型

3.4 示例

如下给出一个基本数据类型和复杂数据类型的使用示例:

CREATE TABLE students(
  name      STRING,   -- 姓名
  age       INT,      -- 年龄
  subject   ARRAY<STRING>,   --学科
  score     MAP<STRING,FLOAT>,  --各个学科考试成绩
  address   STRUCT<houseNumber:int, street:STRING, city:STRING, province:STRING>  --家庭居住地址
) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t";

四、内容格式

当数据存储在文本文件中,必须按照一定格式区别行和列,如使用逗号作为分隔符的 CSV 文件 (Comma-Separated Values) 或者使用制表符作为分隔值的 TSV 文件 (Tab-Separated Values)。但此时也存在一个缺点,就是正常的文件内容中也可能出现逗号或者制表符。

所以 Hive 默认使用了几个平时很少出现的字符,这些字符一般不会作为内容出现在文件中。Hive 默认的行和列分隔符如下表所示。

使用示例如下:

CREATE TABLE page_view(viewTime INT, userid BIGINT)
 ROW FORMAT DELIMITED
   FIELDS TERMINATED BY '\001'
   COLLECTION ITEMS TERMINATED BY '\002'
   MAP KEYS TERMINATED BY '\003'
 STORED AS SEQUENCEFILE;

五、存储格式

5.1 支持的存储格式

Hive 会在 HDFS 为每个数据库上创建一个目录,数据库中的表是该目录的子目录,表中的数据会以文件的形式存储在对应的表目录下。Hive 支持以下几种文件存储格式:

5.2 指定存储格式

通常在创建表的时候使用 STORED AS 参数指定:

CREATE TABLE page_view(viewTime INT, userid BIGINT)
 ROW FORMAT DELIMITED
   FIELDS TERMINATED BY '\001'
   COLLECTION ITEMS TERMINATED BY '\002'
   MAP KEYS TERMINATED BY '\003'
 STORED AS SEQUENCEFILE;

各个存储文件类型指定方式如下:

  • STORED AS TEXTFILE
  • STORED AS SEQUENCEFILE
  • STORED AS ORC
  • STORED AS PARQUET
  • STORED AS AVRO
  • STORED AS RCFILE

六、内部表和外部表

内部表又叫做管理表 (Managed/Internal Table),创建表时不做任何指定,默认创建的就是内部表。想要创建外部表 (External Table),则需要使用 External 进行修饰。 内部表和外部表主要区别如下:

参考资料

  1. Hive Getting Started
  2. Hive SQL 的编译过程
  3. LanguageManual DDL
  4. LanguageManual Types
  5. Managed vs. External Tables
08-20 22:26