spark快速上手

扫码查看

spark快速上手

前言
  • 基于Spark 2.1版本
  • 仅仅是快速上手,没有深究细节
  • 主要参考是官方文档
  • 代码均为官方文档中代码,语言为Scala
进入spark-shell

终端输入spark-shell,进入的是Scala环境的终端,也可以输入pyspark进入Python环境的终端

创建一个SparkSession
import org.apache.spark.sql.SparkSession

val spark = SparkSession
.builder()
.appName("Spark SQL basic example")
.config("spark.some.config.option", "some-value")
.getOrCreate() // For implicit conversions like converting RDDs to DataFrames
import spark.implicits._
创建DataFrame
val df = spark.read.json("examples/src/main/resources/people.json")

// Displays the content of the DataFrame to stdout
df.show()
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+

此处可以读其他格式文件,如text,parquet,对应函数为spark.read.textspark.read.parquet

执行一些操作
df.printSchema()
// root
// |-- age: long (nullable = true)
// |-- name: string (nullable = true) // Select only the "name" column
df.select("name").show()
// +-------+
// | name|
// +-------+
// |Michael|
// | Andy|
// | Justin|
// +-------+ // Select everybody, but increment the age by 1
df.select($"name", $"age" + 1).show()
// +-------+---------+
// | name|(age + 1)|
// +-------+---------+
// |Michael| null|
// | Andy| 31|
// | Justin| 20|
// +-------+---------+ // Select people older than 21
df.filter($"age" > 21).show()
// +---+----+
// |age|name|
// +---+----+
// | 30|Andy|
// +---+----+ // Count people by age
df.groupBy("age").count().show()
// +----+-----+
// | age|count|
// +----+-----+
// | 19| 1|
// |null| 1|
// | 30| 1|
// +----+-----+
执行一些SQL操作

可以看出上一节中利用自带函数可以实现查询的效果,假如对函数不太熟悉,也可以执行SQL语句,如下:

// Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people") val sqlDF = spark.sql("SELECT * FROM people")
sqlDF.show()
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+
  • 此处创建的为TempView,还有GlobalTemporaryView,前者当创建它的session关闭时,view消失;后者则不会。
  • View的作用相当于数据库中的table
DataSet
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the Product interface
case class Person(name: String, age: Long) // Encoders are created for case classes
val caseClassDS = Seq(Person("Andy", 32)).toDS()
caseClassDS.show()
// +----+---+
// |name|age|
// +----+---+
// |Andy| 32|
// +----+---+ // Encoders for most common types are automatically provided by importing spark.implicits._
val primitiveDS = Seq(1, 2, 3).toDS()
primitiveDS.map(_ + 1).collect() // Returns: Array(2, 3, 4) // DataFrames can be converted to a Dataset by providing a class. Mapping will be done by name
val path = "examples/src/main/resources/people.json"
val peopleDS = spark.read.json(path).as[Person]
peopleDS.show()
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+

第一次接触Spark,可能会搞不清楚DataSet和DataFrame的区别,可以参考下面链接:

还有一个RDD的概念,可以参考:

05-11 11:10
查看更多