本文介绍了如何在x86中仅使用2条连续的leal指令将寄存器乘以37?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

说%edi包含x,而我想仅使用2个连续的Leal指令以37 * x结尾,我将如何处理?

Say %edi contains x and I want to end up with 37*x using only 2 consecutive leal instructions, how would I go about this?

例如,要获得45倍,您就可以做到

For example to get 45x you would do

leal (%edi, %edi, 8), %edi   
leal (%edi, %edi, 4), %eax (to be returned)

我一生都无法找出要代替8和4的数字,以使结果(%eax)为37x

I cannot for the life of me figure out what numbers to put in place of the 8 and 4 so that the result (%eax) will be 37x

推荐答案

-O3,gcc将发出(Godbolt编译器资源管理器):

At -O3, gcc will emit (Godbolt compiler explorer):

int mul37(int a)  { return a*37; }

    leal    (%rdi,%rdi,8), %eax      # eax = a * 9
    leal    (%rdi,%rax,4), %eax      # eax = a + 4*(a*9)
    ret

正在使用37 = 9*4 + 1不破坏第一个lea的原始a值,因此它可以在第二个中同时使用.

That's using 37 = 9*4 + 1, not destroying the original a value with the first lea so it can use both in the 2nd.

尽管您没有发现这个错误,但是您很乐于助人:最近的clang(3.8及更高版本)通常会使用2个lea指令而不是imul指令(例如,对于*15),但是会漏掉此指令一种并使用:

You're in good company in not spotting this one, though: recent clang (3.8 and newer) will normally use 2 lea instructions instead of an imul (e.g. for *15), but it misses this one and uses:

    imull   $37, %edi, %eax
    ret

它确实以与5*4 + 1相同的方式使用了gcc使用的*21模式. (clang3.6及更早版本始终使用imul,除非有单指令替代shllea)

It does do *21 with the same pattern as gcc uses, as 5*4 + 1. (clang3.6 and earlier always used imul unless there was a single-instruction alternative shl or lea)

ICC和MSVC也使用imul,但是它们似乎不喜欢使用2条lea指令,因此imul在这里是故意的".

ICC and MSVC also use imul, but they don't seem to like using 2 lea instructions, so the imul is "on purpose" there.

有关gcc7.2与clang5.0的各种乘数,请参见godbolt链接.尝试gcc -m32 -mtune=pentium或什至pentium3来查看gcc当时想要使用多少条指令,这很有趣.尽管P2/P3对于imul r, r, i具有4个周期的延迟,所以还是有点疯狂.奔腾具有9个周期imul,并且没有OOO来隐藏延迟,因此尽力避免出现延迟是很有意义的.

See the godbolt link for a variety of multipliers with gcc7.2 vs. clang5.0. It's interesting to try gcc -m32 -mtune=pentium or even pentium3 to see how many more instructions gcc was wiling to use back then. Although P2/P3 has 4-cycle latency for imul r, r, i, so that's kinda crazy. Pentium has 9 cycle imul and no OOO to hide the latency, so it makes sense to try hard to avoid it.

mtune=silvermont应该只愿意用一条指令替换32位imul,因为它具有3周期延迟/1c吞吐量倍增,但是解码通常是瓶颈(根据Agner Fog, http://agner.org/optimize/).您甚至可以考虑使用imul $64, %edi, %eax(或2的其他幂)来代替mov/shl,因为imul-immediate是一个复制乘积.

mtune=silvermont should probably only be willing to replace 32-bit imul with a single instruction, because it has 3-cycle latency / 1c throughput multiply, but decode is often the bottleneck (according to Agner Fog, http://agner.org/optimize/). You could even consider imul $64, %edi, %eax (or other powers of 2) instead of mov/shl, because imul-immediate is a copy-and-multiply.

具有讽刺意味的是,gcc错过了* 45的情况,并使用了imul,而clang使用了2个lea.猜猜是时候提交一些缺少优化的错误报告了. 如果 2个LEA优于1个IMUL,则应尽可能使用它们.

Ironically, gcc misses the * 45 case, and uses imul, while clang uses 2 leas. Guess it's time to file some missed-optimization bug reports. If 2 LEAs are better than 1 IMUL, they should be used wherever possible.

较旧的clang(3.7及更高版本)将使用imul,除非单个lea可以解决问题.我还没有查看变更日志,看看他们是否做了基准测试来决定支持延迟而不是吞吐量.

Older clang (3.7 and older) uses imul unless a single lea will do the trick. I haven't looked up the changelog to see if they did benchmarks to decide to favour latency over throughput.

相关:在未使用"的值上使用LEA关于地址/指针?关于LEA为什么使用内存操作数语法和机器编码的标准答案,即使它是shift + add指令(并且在大多数现代微体系结构中都在ALU而非AGU上运行)

Related: Using LEA on values that aren't addresses / pointers? canonical answer about why LEA uses memory-operand syntax and machine encoding, even though it's a shift+add instruction (and runs on an ALU, not AGU, in most modern microarchitectures.)

这篇关于如何在x86中仅使用2条连续的leal指令将寄存器乘以37?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-27 17:12