**题意:**给你余数和除数求x 注意除数不一定互质
**思路:**不互质的CRT需要的是将两个余数方程合并,需要用到扩展GCD的性质
合并互质求余方程
m1x -+ m2y = r2 - r1 先用exgcd求出特解x0, y0(m1x + m2y = g)
等式两边都乘以c/g 那么可以得解为 x1 = cx0/g,y1 = cy0/g
由性质可知 通解x' = x1 + km2/g,y' = y1 + km1/g 其中k为任意整数
即 x' = cx0/g + km2/g
设 t = m2/g
为保证x是正数 可以将式子化成 x' = (cx0/d % t + t)%t 因为必定存在k使 cx0/g + kt = ( (cx0/g)%t + t)%t
最后合并的取余式为 X = (m1 * x' + r1) (mod lcm(m1, m2) )
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
#define LL long long
#define ll __int64
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e5+2000;
ll gcd(ll a, ll b)
{
return b?gcd(b, a % b):a;
}
ll exgcd(ll a, ll b, ll &x, ll &y)
{
ll d = a;
if(!b)
{
x = 1;
y = 0;
}
else
{
d = exgcd(b, a % b, y, x);
y -= (a / b) * x;
}
return d;
}
int main()
{
ll n;
while(~scanf("%I64d", &n))
{
ll x, y;
ll m, r;
ll mt, rt;
int flag = 0;
scanf("%I64d%I64d", &m, &r);
for(int i = 0; i < n - 1; i++)
{
scanf("%I64d%I64d", &mt, &rt);
ll c = rt - r;
ll g = gcd(m, mt);
if(c % g!=0)
{
flag = 1;
}
else
{
exgcd(m, mt, x, y);
ll t = mt / g;
x = (c / g * x % t + t) % t;
r = m * x + r;
m = m /gcd(m, mt) * mt;
}
}
if(flag == 1)
printf("-1\n");
else printf("%I64d\n", r);
}
return 0;
}