数据准备:

PUT /shop
{
"settings": {
"number_of_shards": 3,
"number_of_replicas": 2
}
} PUT /shop/_mapping/goods
{
"properties": {
"brand": {
"type": "keyword"
},
"price": {
"type": "float"
},
"model": {
"type": "keyword"
}
}
} POST /shop/goods/_bulk
{"index": {}}
{"price" : 2299.00, "model" : "小米8", "brand" : "小米"}
{"index": {}}
{"price" : 4499.00, "model" : "Mate 20", "brand" : "华为"}
{"index": {}}
{"price" : 3299.00, "model" : "小米Mix3", "brand" : "小米"}
{"index": {}}
{"price" : 1199.00, "model" : "荣耀9i", "brand" : "华为"}
{"index": {}}
{"price" : 2799.00, "model" : "R17", "brand" : "OPPO"}
{"index": {}}
{"price" : 729.00, "model" : "红米6", "brand" : "小米"}
{"index": {}}
{"price" : 2799.00, "model" : "X23", "brand" : "VIVO"}
{"index": {}}
{"price" : 1799.00, "model" : "K1", "brand" : "OPPO"}

一、聚合为桶

按照手机的品牌brand划分为桶

查询指令:

GET /shop/_search
{
"size": 0,
"aggs": {
"brand_aggs": {
"terms": {
"field": "brand"
}
}
}
}

- size: 查询条数,这里设置为0,因为我们不关心搜索到的数据,只关心聚合结果,提高效率
- aggs:声明这是一个聚合查询,是aggregations的缩写
  - popular_colors:给这次聚合起一个名字,任意。
    - terms:划分桶的方式,这里是根据词条划分
      - field:划分桶的字段

查询结果:

{
"took": 6,
"timed_out": false,
"_shards": {
"total": 3,
"successful": 3,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 8,
"max_score": 0,
"hits": []
},
"aggregations": {
"brand_aggs": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "小米",
"doc_count": 3
},
{
"key": "OPPO",
"doc_count": 2
},
{
"key": "华为",
"doc_count": 2
},
{
"key": "VIVO",
"doc_count": 1
}
]
}
}
}

- hits:查询结果为空,因为我们设置了size为0
- aggregations:聚合的结果
  - brand_aggs:我们定义的聚合名称
    - buckets:查找到的桶,每个不同的brand字段值都会形成一个桶
      - key:这个桶对应的brand字段的值
      - doc_count:这个桶中的文档数量

二、桶内度量

为聚合结果添加求价格平均值的度量

查询指令:

GET /shop/_search
{
"size": 0,
"aggs": {
"brand_aggs": {
"terms": {
"field": "brand"
},
"aggs": {
"price_aggs": {
"avg": {
"field": "price"
}
}
}
}
}
}

- aggs:我们在上一个aggs(brand_aggs)中添加新的aggs。可见度量也是一个聚合
  - price_aggs:聚合的名称
    - avg:度量的类型,这里是求平均值
      - field:度量运算的字段

查询结果:

{
"took": 5,
"timed_out": false,
"_shards": {
"total": 3,
"successful": 3,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 8,
"max_score": 0,
"hits": []
},
"aggregations": {
"brand_aggs": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "小米",
"doc_count": 3,
"price_aggs": {
"value": 2109
}
},
{
"key": "OPPO",
"doc_count": 2,
"price_aggs": {
"value": 2299
}
},
{
"key": "华为",
"doc_count": 2,
"price_aggs": {
"value": 2849
}
},
{
"key": "VIVO",
"doc_count": 1,
"price_aggs": {
"value": 2799
}
}
]
}
}
}

可以看到每个桶中都有自己的 price_aggs 字段,这是度量聚合的结果

05-18 22:27